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7. Linear Transformations

Contents
7.1 Examples and Elementary Properties . . . . . . . . . . . . . . . . . . . 366
7.2 Kernel and Image of a Linear Transformation . . . . . . . . . . . . . . 374
7.3 Isomorphisms and Composition . . . . . . . . . . . . . . . . . . . . . . . 385

If V and W are vector spaces, a function T : V → W is a rule that assigns to each vector v in V
a uniquely determined vector T (v) in W . As mentioned in Section 2.2, two functions S : V → W
and T : V →W are equal if S(v) = T (v) for every v in V . A function T : V →W is called a linear
transformation if T (v+v1) = T (v)+T (v1) for all v, v1 in V and T (rv) = rT (v) for all v in V and
all scalars r. T (v) is called the image of v under T . We have already studied linear transformation
T : Rn → Rm and shown (in Section 2.6) that they are all given by multiplication by a uniquely
determined m× n matrix A; that is T (x) = Ax for all x in Rn. In the case of linear operators
R2 →R2, this yields an important way to describe geometric functions such as rotations about the
origin and reflections in a line through the origin.

In the present chapter we will describe linear transformations in general, introduce the kernel
and image of a linear transformation, and prove a useful result (called the dimension theorem)
that relates the dimensions of the kernel and image, and unifies and extends several earlier results.
Finally we study the notion of isomorphic vector spaces, that is, spaces that are identical except
for notation, and relate this to composition of transformations that was introduced in Section 2.3.
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366 Linear Transformations

7.1 Examples and Elementary Properties

Definition 7.1 Linear Transformations of Vector Spaces

V W

T

v T (v)

If V and W are two vector spaces, a function T : V →W is called
a linear transformation if it satisfies the following axioms.

T1. T (v+v1) = T (v)+T (v1) for all v and v1 in V .
T2. T (rv) = rT (v) for all v in V and r in R.

A linear transformation T : V →V is called a linear operator on V . The situation can be
visualized as in the diagram.

Axiom T1 is just the requirement that T preserves vector addition. It asserts that the result
T (v+v1) of adding v and v1 first and then applying T is the same as applying T first to get T (v)
and T (v1) and then adding. Similarly, axiom T2 means that T preserves scalar multiplication.
Note that, even though the additions in axiom T1 are both denoted by the same symbol +, the
addition on the left forming v+v1 is carried out in V , whereas the addition T (v)+T (v1) is done
in W . Similarly, the scalar multiplications rv and rT (v) in axiom T2 refer to the spaces V and W ,
respectively.

We have already seen many examples of linear transformations T :Rn →Rm. In fact, writing vec-
tors in Rn as columns, Theorem 2.6.2 shows that, for each such T , there is an m×n matrix A such that
T (x) = Ax for every x in Rn. Moreover, the matrix A is given by A =

[
T (e1) T (e2) · · · T (en)

]
where {e1, e2, . . . , en} is the standard basis of Rn. We denote this transformation by TA : Rn →Rm,
defined by

TA(x) = Ax for all x in Rn

Example 7.1.1 lists three important linear transformations that will be referred to later. The
verification of axioms T1 and T2 is left to the reader.

Example 7.1.1

If V and W are vector spaces, the following are linear transformations:

Identity operator V →V 1V : V →V where 1V (v) = v for all v in V
Zero transformation V →W 0 : V →W where 0(v) = 0 for all v in V
Scalar operator V →V a : V →V where a(v) = av for all v in V

(Here a is any real number.)

The symbol 0 will be used to denote the zero transformation from V to W for any spaces V and
W . It was also used earlier to denote the zero function [a, b]→ R.

The next example gives two important transformations of matrices. Recall that the trace tr A
of an n×n matrix A is the sum of the entries on the main diagonal.
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Example 7.1.2

Show that the transposition and trace are linear transformations. More precisely,

R : Mmn → Mnm where R(A) = AT for all A in Mmn
S : Mmn → R where S(A) = tr A for all A in Mnn

are both linear transformations.

Solution. Axioms T1 and T2 for transposition are (A+B)T = AT +BT and (rA)T = r(AT ),
respectively (using Theorem 2.1.2). The verifications for the trace are left to the reader.

Example 7.1.3

If a is a scalar, define Ea : Pn → R by Ea(p) = p(a) for each polynomial p in Pn. Show that
Ea is a linear transformation (called evaluation at a).

Solution. If p and q are polynomials and r is in R, we use the fact that the sum p+q and
scalar product rp are defined as for functions:

(p+q)(x) = p(x)+q(x) and (rp)(x) = rp(x)

for all x. Hence, for all p and q in Pn and all r in R:

Ea(p+q) = (p+q)(a) = p(a)+q(a) = Ea(p)+Ea(q), and
Ea(rp) = (rp)(a) = rp(a) = rEa(p).

Hence Ea is a linear transformation.

The next example involves some calculus.

Example 7.1.4

Show that the differentiation and integration operations on Pn are linear transformations.
More precisely,

D : Pn → Pn−1 where D [p(x)] = p′(x) for all p(x) in Pn

I : Pn → Pn+1 where I [p(x)] =
∫ x

0
p(t)dt for all p(x) in Pn

are linear transformations.

Solution. These restate the following fundamental properties of differentiation and
integration.

[p(x)+q(x)]′ = p′(x)+q′(x) and [rp(x)]′ = (rp)′(x)∫ x
0 [p(t)+q(t)]dt =

∫ x
0 p(t)dt +

∫ x
0 q(t)dt and

∫ x
0 rp(t)dt = r

∫ x
0 p(t)dt
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The next theorem collects three useful properties of all linear transformations. They can be
described by saying that, in addition to preserving addition and scalar multiplication (these are the
axioms), linear transformations preserve the zero vector, negatives, and linear combinations.

Theorem 7.1.1
Let T : V →W be a linear transformation.

1. T (0) = 0.

2. T (−v) =−T (v) for all v in V .

3. T (r1v1 + r2v2 + · · ·+ rkvk) = r1T (v1)+ r2T (v2)+ · · ·+ rkT (vk) for all vi in V and all ri
in R.

Proof.

1. T (0) = T (0v) = 0T (v) = 0 for any v in V .

2. T (−v) = T [(−1)v] = (−1)T (v) =−T (v) for any v in V .

3. The proof of Theorem 2.6.1 goes through.

The ability to use the last part of Theorem 7.1.1 effectively is vital to obtaining the benefits of
linear transformations. Example 7.1.5 and Theorem 7.1.2 provide illustrations.

Example 7.1.5

Let T : V →W be a linear transformation. If T (v−3v1) = w and T (2v−v1) = w1, find
T (v) and T (v1) in terms of w and w1.

Solution. The given relations imply that

T (v)−3T (v1) = w
2T (v)−T (v1) = w1

by Theorem 7.1.1. Subtracting twice the first from the second gives T (v1) =
1
5(w1 −2w).

Then substitution gives T (v) = 1
5(3w1 −w).

The full effect of property (3) in Theorem 7.1.1 is this: If T : V → W is a linear transforma-
tion and T (v1), T (v2), . . . , T (vn) are known, then T (v) can be computed for every vector v in
span{v1, v2, . . . , vn}. In particular, if {v1, v2, . . . , vn} spans V , then T (v) is determined for all v
in V by the choice of T (v1), T (v2), . . . , T (vn). The next theorem states this somewhat differently.
As for functions in general, two linear transformations T : V →W and S : V →W are called equal
(written T = S) if they have the same action; that is, if T (v) = S(v) for all v in V .
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Theorem 7.1.2
Let T : V →W and S : V →W be two linear transformations. Suppose that
V = span{v1, v2, . . . , vn}. If T(vi) = S(vi) for each i, then T = S.

Proof. If v is any vector in V = span{v1, v2, . . . , vn}, write v = a1v1 + a2v2 + · · ·+ anvn where
each ai is in R. Since T (vi) = S(vi) for each i, Theorem 7.1.1 gives

T (v) = T (a1v1 +a2v2 + · · ·+anvn)

= a1T (v1)+a2T (v2)+ · · ·+anT (vn)

= a1S(v1)+a2S(v2)+ · · ·+anS(vn)

= S(a1v1 +a2v2 + · · ·+anvn)

= S(v)

Since v was arbitrary in V , this shows that T = S.

Example 7.1.6

Let V = span{v1, . . . , vn}. Let T : V →W be a linear transformation. If
T (v1) = · · ·= T (vn) = 0, show that T = 0, the zero transformation from V to W .

Solution. The zero transformation 0 : V →W is defined by 0(v) = 0 for all v in V
(Example 7.1.1), so T (vi) = 0(vi) holds for each i. Hence T = 0 by Theorem 7.1.2.

Theorem 7.1.2 can be expressed as follows: If we know what a linear transformation T : V →W
does to each vector in a spanning set for V , then we know what T does to every vector in V . If the
spanning set is a basis, we can say much more.

Theorem 7.1.3
Let V and W be vector spaces and let {b1, b2, . . . , bn} be a basis of V . Given any vectors
w1, w2, . . . , wn in W (they need not be distinct), there exists a unique linear
transformation T : V →W satisfying T (bi) = wi for each i = 1, 2, . . . , n. In fact, the action
of T is as follows:
Given v = v1b1 + v2b2 + · · ·+ vnbn in V , vi in R, then

T (v) = T (v1b1 + v2b2 + · · ·+ vnbn) = v1w1 + v2w2 + · · ·+ vnwn.

Proof. If a transformation T does exist with T (bi) = wi for each i, and if S is any other such
transformation, then T (bi) = wi = S(bi) holds for each i, so S = T by Theorem 7.1.2. Hence T is
unique if it exists, and it remains to show that there really is such a linear transformation. Given v in
V , we must specify T (v) in W . Because {b1, . . . , bn} is a basis of V , we have v = v1b1+ · · ·+vnbn,
where v1, . . . , vn are uniquely determined by v (this is Theorem 6.3.1). Hence we may define
T : V →W by

T (v) = T (v1b1 + v2b2 + · · ·+ vnbn) = v1w1 + v2w2 + · · ·+ vnwn
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for all v = v1b1+ · · ·+vnbn in V . This satisfies T (bi) = wi for each i; the verification that T is linear
is left to the reader.

This theorem shows that linear transformations can be defined almost at will: Simply specify
where the basis vectors go, and the rest of the action is dictated by the linearity. Moreover,
Theorem 7.1.2 shows that deciding whether two linear transformations are equal comes down to
determining whether they have the same effect on the basis vectors. So, given a basis {b1, . . . , bn}
of a vector space V , there is a different linear transformation V → W for every ordered selection
w1, w2, . . . , wn of vectors in W (not necessarily distinct).

Example 7.1.7

Find a linear transformation T : P2 → M22 such that

T (1+ x) =
[

1 0
0 0

]
, T (x+ x2) =

[
0 1
1 0

]
, and T (1+ x2) =

[
0 0
0 1

]
.

Solution. The set {1+ x, x+ x2, 1+ x2} is a basis of P2, so every vector p = a+bx+ cx2 in
P2 is a linear combination of these vectors. In fact

p(x) = 1
2(a+b− c)(1+ x)+ 1

2(−a+b+ c)(x+ x2)+ 1
2(a−b+ c)(1+ x2)

Hence Theorem 7.1.3 gives

T [p(x)] = 1
2(a+b− c)

[
1 0
0 0

]
+ 1

2(−a+b+ c)
[

0 1
1 0

]
+ 1

2(a−b+ c)
[

0 0
0 1

]
= 1

2

[
a+b− c −a+b+ c

−a+b+ c a−b+ c

]

Exercises for 7.1

Exercise 7.1.1 Show that each of the following
functions is a linear transformation.

a. T : R2 → R2; T (x, y) = (x, −y) (reflection in
the x axis)

b. T : R3 →R3; T (x, y, z) = (x, y, −z) (reflection
in the x-y plane)

c. T : C→ C; T (z) = z (conjugation)

d. T : Mmn →Mkl; T (A) = PAQ, P a k×m matrix,
Q an n× l matrix, both fixed

e. T : Mnn → Mnn; T (A) = AT +A

f. T : Pn → R; T [p(x)] = p(0)

g. T : Pn → R; T (r0 + r1x+ · · ·+ rnxn) = rn

h. T : Rn →R; T (x) = x ·z, z a fixed vector in Rn

i. T : Pn → Pn; T [p(x)] = p(x+1)

j. T : Rn → V ; T (r1, · · · , rn) = r1e1 + · · ·+ rnen

where {e1, . . . , en} is a fixed basis of V

k. T : V → R; T (r1e1 + · · ·+ rnen) = r1, where
{e1, . . . , en} is a fixed basis of V
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b. T (v) = vA where A =

 1 0 0
0 1 0
0 0 −1


d. T (A+B) = P(A+B)Q = PAQ+PBQ = T (A)+

T (B);T (rA) = P(rA)Q = rPAQ = rT (A)

f. T [(p+q)(x)] = (p + q)(0) = p(0) + q(0) =
T [p(x)]+T [q(x)];
T [(rp)(x)] = (rp)(0) = r(p(0)) = rT [p(x)]

h. T (X +Y ) = (X +Y ) ·Z = X ·Z +Y ·Z = T (X)+
T (Y ), and T (rX) = (rX) ·Z = r(X ·Z) = rT (X)

j. If v = (v1, . . . , vn) and w = (w1, . . . , wn),
then T (v + w) = (v1 + w1)e1 + · · · + (vn +
wn)en = (v1e1 + · · · + vnen) + (w1e1 + · · · +
wnen) = T (v)+T (w)
T (av) = (av1)e + · · ·+ (avn)en = a(ve + · · ·+
vnen) = aT (v)

Exercise 7.1.2 In each case, show that T is not a
linear transformation.

a. T : Mnn → R; T (A) = det A

b. T : Mnm → R; T (A) = rank A

c. T : R→ R; T (x) = x2

d. T : V →V ; T (v) = v+u where u 6= 0 is a fixed
vector in V (T is called the translation by u)

b. rank (A+B) 6= rank A+ rank B in general. For

example, A =

[
1 0
0 1

]
and B =

[
1 0
0 −1

]
.

d. T (0) = 0+u = u 6= 0, so T is not linear by
Theorem 7.1.1.

Exercise 7.1.3 In each case, assume that T is a
linear transformation.

a. If T : V → R and T (v1) = 1, T (v2) = −1, find
T (3v1 −5v2).

b. If T : V → R and T (v1) = 2, T (v2) = −3, find
T (3v1 +2v2).

c. If T : R2 → R2 and T
[

1
3

]
=

[
1
1

]
,

T
[

1
1

]
=

[
0
1

]
, find T

[
−1

3

]
.

d. If T : R2 → R2 and T
[

1
−1

]
=

[
0
1

]
,

T
[

1
1

]
=

[
1
0

]
, find T

[
1

−7

]
.

e. If T : P2 → P2 and T (x+1) = x, T (x−1) = 1,
T (x2) = 0, find T (2+3x− x2).

f. If T : P2 → R and T (x+2) = 1, T (1) = 5,
T (x2 + x) = 0, find T (2− x+3x2).

b. T (3v1 +2v2) = 0

d. T
[

1
−7

]
=

[
−3

4

]
f. T (2− x+3x2) = 46

Exercise 7.1.4 In each case, find a linear transfor-
mation with the given properties and compute T (v).

a. T : R2 → R3; T (1, 2) = (1, 0, 1),
T (−1, 0) = (0, 1, 1); v = (2, 1)

b. T : R2 → R3; T (2, −1) = (1, −1, 1),
T (1, 1) = (0, 1, 0); v = (−1, 2)

c. T : P2 → P3; T (x2) = x3, T (x+1) = 0,
T (x−1) = x; v = x2 + x+1

d. T : M22 →R; T
[

1 0
0 0

]
= 3, T

[
0 1
1 0

]
=−1,

T
[

1 0
1 0

]
= 0 = T

[
0 0
0 1

]
; v =

[
a b
c d

]

b. T (x, y) = 1
3(x − y, 3y, x − y); T (−1, 2) =

(−1, 2, −1)

d. T
[

a b
c d

]
= 3a−3c+2b

Exercise 7.1.5 If T : V →V is a linear transforma-
tion, find T (v) and T (w) if:
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a. T (v+w) = v−2w and T (2v−w) = 2v

b. T (v+2w) = 3v−w and T (v−w) = 2v−4w

b. T (v) = 1
3(7v−9w), T (w) = 1

3(v+3w)

Exercise 7.1.6 If T : V → W is a linear transfor-
mation, show that T (v−v1) = T (v)−T (v1) for all
v and v1 in V .

Exercise 7.1.7 Let {e1, e2} be the standard basis
of R2. Is it possible to have a linear transformation
T such that T (e1) lies in R while T (e2) lies in R2?
Explain your answer.

Exercise 7.1.8 Let {v1, . . . , vn} be a basis of V
and let T : V →V be a linear transformation.

a. If T (vi) = vi for each i, show that T = 1V .

b. If T (vi) =−vi for each i, show that T =−1 is
the scalar operator (see Example 7.1.1).

b. T (v) = (−1)v for all v in V , so T is the scalar
operator −1.

Exercise 7.1.9 If A is an m× n matrix, let Ck(A)
denote column k of A. Show that Ck : Mmn → Rm is
a linear transformation for each k = 1, . . . , n.

Exercise 7.1.10 Let {e1, . . . , en} be a basis of Rn.
Given k, 1 ≤ k ≤ n, define Pk : Rn → Rn by
Pk(r1e1 + · · ·+ rnen) = rkek. Show that Pk a linear
transformation for each k.

Exercise 7.1.11 Let S : V →W and T : V →W be
linear transformations. Given a in R, define func-
tions
(S+T ) : V → W and (aT ) : V → W by (S+T )(v) =
S(v)+T (v) and (aT )(v)= aT (v) for all v in V . Show
that S+T and aT are linear transformations.

Exercise 7.1.12 Describe all linear transforma-
tions
T : R→V .
If T (1) = v, then T (r) = T (r ·1) = rT (1) = rv for all
r in R.

Exercise 7.1.13 Let V and W be vector spaces, let
V be finite dimensional, and let v 6= 0 in V . Given
any w in W , show that there exists a linear trans-
formation T : V → W with T (v) = w. [Hint: Theo-
rem 6.4.1 and Theorem 7.1.3.]

Exercise 7.1.14 Given y in Rn, define Sy : Rn →R
by Sy(x) = x ·y for all x in Rn (where · is the dot
product introduced in Section 5.3).

a. Show that Sy : Rn → R is a linear transforma-
tion for any y in Rn.

b. Show that every linear transformation T :
Rn → R arises in this way; that is, T = Sy for
some y in Rn. [Hint: If {e1, . . . , en} is the
standard basis of Rn, write Sy(ei) = yi for each
i. Use Theorem 7.1.1.]

Exercise 7.1.15 Let T : V →W be a linear trans-
formation.

a. If U is a subspace of V , show that
T (U) = {T (u) | u in U} is a subspace of W
(called the image of U under T ).

b. If P is a subspace of W , show that
{v in V | T (v) in P} is a subspace of V (called
the preimage of P under T ).

b. 0 is in U = {v∈V | T (v)∈P} because T (0)= 0
is in P. If v and w are in U , then T (v) and
T (w) are in P. Hence T (v+w) = T (v)+T (w)
is in P and T (rv) = rT (v) is in P, so v+w and
rv are in U .

Exercise 7.1.16 Show that differentiation is the
only linear transformation Pn → Pn that satisfies
T (xk) = kxk−1 for each k = 0, 1, 2, . . . , n.

Exercise 7.1.17 Let T : V →W be a linear trans-
formation and let v1, . . . , vn denote vectors in V .

a. If {T (v1), . . . , T (vn)} is linearly independent,
show that {v1, . . . , vn} is also independent.

b. Find T : R2 → R2 for which the converse of
part (a) is false.
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Exercise 7.1.18 Suppose T : V →V is a linear op-
erator with the property that T [T (v)] = v for all v
in V . (For example, transposition in Mnn or conju-
gation in C.) If v 6= 0 in V , show that {v, T (v)}
is linearly independent if and only if T (v) 6= v and
T (v) 6=−v.
Suppose rv+sT (v) = 0. If s = 0, then r = 0 (because
v 6= 0). If s 6= 0, then T (v) = av where a = −s−1r.
Thus v = T 2(v) = T (av) = a2v, so a2 = 1, again be-
cause v 6= 0. Hence a = ±1. Conversely, if T (v) =
±v, then {v, T (v)} is certainly not independent.

Exercise 7.1.19 If a and b are real numbers, de-
fine Ta, b : C→C by Ta, b(r+si) = ra+sbi for all r+si
in C.

a. Show that Ta, b is linear and Ta, b(z) = Ta, b(z)
for all z in C. (Here z denotes the conjugate
of z.)

b. If T : C→ C is linear and T (z) = T (z) for all z
in C, show that T = Ta, b for some real a and
b.

Exercise 7.1.20 Show that the following con-
ditions are equivalent for a linear transformation
T : M22 → M22.

1. tr [T (A)] = tr A for all A in M22.

2. T
[

r11 r12
r21 r22

]
= r11B11 + r12B12 + r21B21 +

r22B22 for matrices Bi j such that
tr B11 = 1 = tr B22 and tr B12 = 0 = tr B21.

Exercise 7.1.21 Given a in R, consider the eval-
uation map Ea : Pn → R defined in Example 7.1.3.

a. Show that Ea is a linear transformation sat-
isfying the additional condition that Ea(xk) =
[Ea(x)]

k holds for all k = 0, 1, 2, . . . . [Note:
x0 = 1.]

b. If T : Pn → R is a linear transformation sat-
isfying T (xk) = [T (x)]k for all k = 0, 1, 2, . . . ,
show that T = Ea for some a in R.

b. Given such a T , write T (x) = a. If p = p(x) =
∑

n
i=0 aixi, then T (p) = ∑aiT (xi) = ∑ai [T (x)]

i =

∑aiai = p(a) = Ea(p). Hence T = Ea.

Exercise 7.1.22 If T : Mnn →R is any linear trans-
formation satisfying T (AB) = T (BA) for all A and
B in Mnn, show that there exists a number k such
that T (A) = k tr A for all A. (See Lemma 5.5.1.)
[Hint: Let Ei j denote the n × n matrix with 1 in
the (i, j) position and zeros elsewhere. Show that

EikEl j =

{
0 if k 6= l

Ei j if k = l
. Use this to show that

T (Ei j) = 0 if i 6= j and
T (E11) = T (E22) = · · · = T (Enn). Put k = T (E11) and
use the fact that {Ei j | 1≤ i, j ≤ n} is a basis of Mnn.]

Exercise 7.1.23 Let T :C→C be a linear transfor-
mation of the real vector space C and assume that
T (a) = a for every real number a. Show that the
following are equivalent:

a. T (zw) = T (z)T (w) for all z and w in C.

b. Either T = 1C or T (z)= z for each z in C (where
z denotes the conjugate).
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7.2 Kernel and Image of a Linear Transformation

This section is devoted to two important subspaces associated with a linear transformation T : V →
W .

Definition 7.2 Kernel and Image of a Linear Transformation

The kernel of T (denoted ker T ) and the image of T (denoted im T or T (V )) are defined by

ker T = {v in V | T (v) = 0}
im T = {T (v) | v in V}= T (V )

ker T

T

V

W
0

im TV W
T

The kernel of T is often called the nullspace of T because it consists
of all vectors v in V satisfying the condition that T (v) = 0. The image
of T is often called the range of T and consists of all vectors w in W
of the form w = T (v) for some v in V . These subspaces are depicted
in the diagrams.

Example 7.2.1

Let TA : Rn → Rm be the linear transformation induced by the
m×n matrix A, that is TA(x) = Ax for all columns x in Rn.
Then

ker TA = {x | Ax = 0}= null A and
im TA = {Ax | x in Rn}= im A

Hence the following theorem extends Example 5.1.2.

Theorem 7.2.1
Let T : V →W be a linear transformation.

1. ker T is a subspace of V .

2. im T is a subspace of W .

Proof. The fact that T (0) = 0 shows that ker T and im T contain the zero vector of V and W
respectively.

1. If v and v1 lie in ker T , then T (v) = 0 = T (v1), so

T (v+v1) = T (v)+T (v1) = 0+0 = 0
T (rv) = rT (v) = r0 = 0 for all r in R
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Hence v+v1 and rv lie in ker T (they satisfy the required condition), so ker T is a subspace
of V by the subspace test (Theorem 6.2.1).

2. If w and w1 lie in im T , write w = T (v) and w1 = T (v1) where v, v1 ∈V . Then

w+w1 = T (v)+T (v1) = T (v+v1)

rw = rT (v) = T (rv) for all r in R

Hence w+w1 and rw both lie in im T (they have the required form), so im T is a subspace
of W .

Given a linear transformation T : V →W :

dim (ker T ) is called the nullity of T and denoted as nullity (T )
dim ( im T ) is called the rank of T and denoted as rank (T )

The rank of a matrix A was defined earlier to be the dimension of col A, the column space of A.
The two usages of the word rank are consistent in the following sense. Recall the definition of TA
in Example 7.2.1.

Example 7.2.2

Given an m×n matrix A, show that im TA = col A, so rank TA = rank A.

Solution. Write A =
[

c1 · · · cn
]

in terms of its columns. Then

im TA = {Ax | x in Rn}= {x1c1 + · · ·+ xncn | xi in R}

using Definition 2.5. Hence im TA is the column space of A; the rest follows.

Often, a useful way to study a subspace of a vector space is to exhibit it as the kernel or image
of a linear transformation. Here is an example.

Example 7.2.3

Define a transformation P : Mnn → Mnn by P(A) = A−AT for all A in Mnn. Show that P is
linear and that:

a. ker P consists of all symmetric matrices.

b. im P consists of all skew-symmetric matrices.

Solution. The verification that P is linear is left to the reader. To prove part (a), note that
a matrix A lies in ker P just when 0 = P(A) = A−AT , and this occurs if and only if
A = AT —that is, A is symmetric. Turning to part (b), the space im P consists of all matrices
P(A), A in Mnn. Every such matrix is skew-symmetric because

P(A)T = (A−AT )T = AT −A =−P(A)
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On the other hand, if S is skew-symmetric (that is, ST =−S), then S lies in im P. In fact,

P
[1

2S
]
= 1

2S−
[1

2S
]T

= 1
2(S−ST ) = 1

2(S+S) = S

One-to-One and Onto Transformations

Definition 7.3 One-to-one and Onto Linear Transformations
Let T : V →W be a linear transformation.

1. T is said to be onto if im T =W .

2. T is said to be one-to-one if T (v) = T (v1) implies v = v1.

A vector w in W is said to be hit by T if w = T (v) for some v in V . Then T is onto if every
vector in W is hit at least once, and T is one-to-one if no element of W gets hit twice. Clearly the
onto transformations T are those for which im T =W is as large a subspace of W as possible. By
contrast, Theorem 7.2.2 shows that the one-to-one transformations T are the ones with ker T as
small a subspace of V as possible.

Theorem 7.2.2
If T : V →W is a linear transformation, then T is one-to-one if and only if ker T = {0}.

Proof. If T is one-to-one, let v be any vector in ker T . Then T (v) = 0, so T (v) = T (0). Hence
v = 0 because T is one-to-one. Hence ker T = {0}.

Conversely, assume that ker T = {0} and let T (v) = T (v1) with v and v1 in V . Then
T (v−v1) = T (v)−T (v1) = 0, so v−v1 lies in ker T = {0}. This means that v−v1 = 0, so v = v1,
proving that T is one-to-one.

Example 7.2.4

The identity transformation 1V : V →V is both one-to-one and onto for any vector space V .

Example 7.2.5

Consider the linear transformations

S : R3 → R2 given by S(x, y, z) = (x+ y, x− y)

T : R2 → R3 given by T (x, y) = (x+ y, x− y, x)

Show that T is one-to-one but not onto, whereas S is onto but not one-to-one.
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Solution. The verification that they are linear is omitted. T is one-to-one because

ker T = {(x, y) | x+ y = x− y = x = 0}= {(0, 0)}

However, it is not onto. For example (0, 0, 1) does not lie in im T because if
(0, 0, 1) = (x+ y, x− y, x) for some x and y, then x+ y = 0 = x− y and x = 1, an
impossibility. Turning to S, it is not one-to-one by Theorem 7.2.2 because (0, 0, 1) lies in
ker S. But every element (s, t) in R2 lies in im S because (s, t) = (x+ y, x− y) = S(x, y, z)
for some x, y, and z (in fact, x = 1

2(s+ t), y = 1
2(s− t), and z = 0). Hence S is onto.

Example 7.2.6

Let U be an invertible m×m matrix and define

T : Mmn → Mmn by T (X) =UX for all X in Mmn

Show that T is a linear transformation that is both one-to-one and onto.

Solution. The verification that T is linear is left to the reader. To see that T is one-to-one,
let T (X) = 0. Then UX = 0, so left-multiplication by U−1 gives X = 0. Hence ker T = {0},
so T is one-to-one. Finally, if Y is any member of Mmn, then U−1Y lies in Mmn too, and
T (U−1Y ) =U(U−1Y ) = Y . This shows that T is onto.

The linear transformations Rn → Rm all have the form TA for some m× n matrix A (Theo-
rem 2.6.2). The next theorem gives conditions under which they are onto or one-to-one. Note the
connection with Theorem 5.4.3 and Theorem 5.4.4.

Theorem 7.2.3
Let A be an m×n matrix, and let TA : Rn → Rm be the linear transformation induced by A,
that is TA(x) = Ax for all columns x in Rn.

1. TA is onto if and only if rank A = m.

2. TA is one-to-one if and only if rank A = n.

Proof.

1. We have that im TA is the column space of A (see Example 7.2.2), so TA is onto if and only
if the column space of A is Rm. Because the rank of A is the dimension of the column space,
this holds if and only if rank A = m.

2. ker TA = {x in Rn | Ax = 0}, so (using Theorem 7.2.2) TA is one-to-one if and only if Ax = 0
implies x = 0. This is equivalent to rank A = n by Theorem 5.4.3.



378 Linear Transformations

The Dimension Theorem

Let A denote an m× n matrix of rank r and let TA : Rn → Rm denote the corresponding matrix
transformation given by TA(x) = Ax for all columns x in Rn. It follows from Example 7.2.1 and Ex-
ample 7.2.2 that im TA = col A, so dim ( im TA) = dim (col A) = r. On the other hand Theorem 5.4.2
shows that dim (ker TA) = dim (null A) = n− r. Combining these we see that

dim ( im TA)+ dim (ker TA) = n for every m×n matrix A

The main result of this section is a deep generalization of this observation.

Theorem 7.2.4: Dimension Theorem
Let T : V →W be any linear transformation and assume that ker T and im T are both finite
dimensional. Then V is also finite dimensional and

dim V = dim (ker T )+ dim ( im T )

In other words, dim V = nullity (T )+ rank (T ).

Proof. Every vector in im T =T (V ) has the form T (v) for some v in V . Hence let {T (e1), T (e2), . . . , T (er)}
be a basis of im T , where the ei lie in V . Let {f1, f2, . . . , fk} be any basis of ker T . Then
dim ( im T ) = r and dim (ker T ) = k, so it suffices to show that B = {e1, . . . , er, f1, . . . , fk} is a basis
of V .

1. B spans V . If v lies in V , then T (v) lies in im V , so

T (v) = t1T (e1)+ t2T (e2)+ · · ·+ trT (er) ti in R

This implies that v− t1e1 − t2e2 − ·· · − trer lies in ker T and so is a linear combination of
f1, . . . , fk. Hence v is a linear combination of the vectors in B.

2. B is linearly independent. Suppose that ti and s j in R satisfy

t1e1 + · · ·+ trer + s1f1 + · · ·+ skfk = 0 (7.1)

Applying T gives t1T (e1)+ · · ·+ trT (er) = 0 (because T (fi) = 0 for each i). Hence the inde-
pendence of {T (e1), . . . , T (er)} yields t1 = · · ·= tr = 0. But then (7.1) becomes

s1f1 + · · ·+ skfk = 0

so s1 = · · · = sk = 0 by the independence of {f1, . . . , fk}. This proves that B is linearly
independent.

Note that the vector space V is not assumed to be finite dimensional in Theorem 7.2.4. In fact,
verifying that ker T and im T are both finite dimensional is often an important way to prove that
V is finite dimensional.



7.2. Kernel and Image of a Linear Transformation 379

Note further that r+ k = n in the proof so, after relabelling, we end up with a basis

B = {e1, e2, . . . , er, er+1, . . . , en}

of V with the property that {er+1, . . . , en} is a basis of ker T and {T (e1), . . . , T (er)} is a basis of
im T . In fact, if V is known in advance to be finite dimensional, then any basis {er+1, . . . , en} of
ker T can be extended to a basis {e1, e2, . . . , er, er+1, . . . , en} of V by Theorem 6.4.1. Moreover, it
turns out that, no matter how this is done, the vectors {T (e1), . . . , T (er)} will be a basis of im T .
This result is useful, and we record it for reference. The proof is much like that of Theorem 7.2.4
and is left as Exercise 7.2.26.

Theorem 7.2.5
Let T : V →W be a linear transformation, and let {e1, . . . , er, er+1, . . . , en} be a basis of V
such that {er+1, . . . , en} is a basis of ker T . Then {T (e1), . . . , T (er)} is a basis of im T ,
and hence r = rank T .

The dimension theorem is one of the most useful results in all of linear algebra. It shows that
if either dim (ker T ) or dim ( im T ) can be found, then the other is automatically known. In many
cases it is easier to compute one than the other, so the theorem is a real asset. The rest of this
section is devoted to illustrations of this fact. The next example uses the dimension theorem to
give a different proof of the first part of Theorem 5.4.2.

Example 7.2.7

Let A be an m×n matrix of rank r. Show that the space null A of all solutions of the system
Ax = 0 of m homogeneous equations in n variables has dimension n− r.

Solution. The space in question is just ker TA, where TA : Rn →Rm is defined by TA(x) = Ax
for all columns x in Rn. But dim ( im TA) = rank TA = rank A = r by Example 7.2.2, so
dim (ker TA) = n− r by the dimension theorem.

Example 7.2.8

If T : V →W is a linear transformation where V is finite dimensional, then

dim (ker T )≤ dim V and dim ( im T )≤ dim V

Indeed, dim V = dim (ker T )+ dim ( im T ) by Theorem 7.2.4. Of course, the first inequality
also follows because ker T is a subspace of V .

Example 7.2.9

Let D : Pn → Pn−1 be the differentiation map defined by D [p(x)] = p′(x). Compute ker D
and hence conclude that D is onto.
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Solution. Because p′(x) = 0 means p(x) is constant, we have dim (ker D) = 1. Since
dim Pn = n+1, the dimension theorem gives

dim ( im D) = (n+1)− dim (ker D) = n = dim (Pn−1)

This implies that im D = Pn−1, so D is onto.

Of course it is not difficult to verify directly that each polynomial q(x) in Pn−1 is the derivative
of some polynomial in Pn (simply integrate q(x)!), so the dimension theorem is not needed in this
case. However, in some situations it is difficult to see directly that a linear transformation is onto,
and the method used in Example 7.2.9 may be by far the easiest way to prove it. Here is another
illustration.

Example 7.2.10

Given a in R, the evaluation map Ea : Pn → R is given by Ea [p(x)] = p(a). Show that Ea is
linear and onto, and hence conclude that {(x−a), (x−a)2, . . . , (x−a)n} is a basis of ker Ea,
the subspace of all polynomials p(x) for which p(a) = 0.

Solution. Ea is linear by Example 7.1.3; the verification that it is onto is left to the reader.
Hence dim ( im Ea) = dim (R) = 1, so dim (ker Ea) = (n+1)−1 = n by the dimension
theorem. Now each of the n polynomials (x−a), (x−a)2, . . . , (x−a)n clearly lies in ker Ea,
and they are linearly independent (they have distinct degrees). Hence they are a basis
because dim (ker Ea) = n.

We conclude by applying the dimension theorem to the rank of a matrix.

Example 7.2.11

If A is any m×n matrix, show that rank A = rank AT A = rank AAT .

Solution. It suffices to show that rank A = rank AT A (the rest follows by replacing A with
AT ). Write B = AT A, and consider the associated matrix transformations

TA : Rn → Rm and TB : Rn → Rn

The dimension theorem and Example 7.2.2 give

rank A = rank TA = dim ( im TA) = n− dim (ker TA)

rank B = rank TB = dim ( im TB) = n− dim (ker TB)

so it suffices to show that ker TA = ker TB. Now Ax = 0 implies that Bx = AT Ax = 0, so
ker TA is contained in ker TB. On the other hand, if Bx = 0, then AT Ax = 0, so

‖Ax‖2 = (Ax)T (Ax) = xT AT Ax = xT 0 = 0

This implies that Ax = 0, so ker TB is contained in ker TA.
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Exercises for 7.2

Exercise 7.2.1 For each matrix A, find a basis for
the kernel and image of TA, and find the rank and
nullity of TA. 1 2 −1 1

3 1 0 2
1 −3 2 0

a)

 2 1 −1 3
1 0 3 1
1 1 −4 2

b)


1 2 −1
3 1 2
4 −1 5
0 2 −2

c)


2 1 0
1 −1 3
1 2 −3
0 3 −6

d)

b.


−3
7
1
0

 ,


1
1
0

−1


;


 1

0
1

 ,

 0
1

−1

; 2, 2

d.


 −1

2
1

;




1
0
1
1

 ,


0
1

−1
−2


; 2, 1

Exercise 7.2.2 In each case, (i) find a basis of
ker T , and (ii) find a basis of im T . You may assume
that T is linear.

a. T : P2 → R2; T (a+bx+ cx2) = (a, b)

b. T : P2 → R2; T (p(x)) = (p(0), p(1))

c. T : R3 → R3; T (x, y, z) = (x+ y, x+ y, 0)

d. T : R3 → R4; T (x, y, z) = (x, x, y, y)

e. T : M22 →M22; T
[

a b
c d

]
=

[
a+b b+ c
c+d d +a

]

f. T : M22 → R; T
[

a b
c d

]
= a+d

g. T : Pn → R; T (r0 + r1x+ · · ·+ rnxn) = rn

h. T : Rn →R; T (r1, r2, . . . , rn) = r1+ r2+ · · ·+ rn

i. T : M22 → M22; T (X) = XA−AX , where

A =

[
0 1
1 0

]
j. T : M22 → M22; T (X) = XA, where A =[

1 1
0 0

]

b. {x2 − x}; {(1, 0), (0, 1)}

d. {(0, 0, 1)}; {(1, 1, 0, 0), (0, 0, 1, 1)}

f.
{[

1 0
0 −1

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]}
; {1}

h. {(1, 0, 0, . . . , 0, −1), (0, 1, 0, . . . , 0, −1),
. . . , (0, 0, 0, . . . , 1, −1)}; {1}

j.
{[

0 1
0 0

]
,
[

0 0
0 1

]}
;{[

1 1
0 0

]
,
[

0 0
1 1

]}
Exercise 7.2.3 Let P : V → R and Q : V → R be
linear transformations, where V is a vector space.
Define T : V → R2 by T (v) = (P(v), Q(v)).

a. Show that T is a linear transformation.

b. Show that ker T = ker P∩ ker Q, the set of vec-
tors in both ker P and ker Q.

b. T (v) = 0 = (0, 0) if and only if P(v) = 0
and Q(v) = 0; that is, if and only if v is in
ker P∩ ker Q.

Exercise 7.2.4 In each case, find a basis
B = {e1, . . . , er, er+1, . . . , en} of V such that
{er+1, . . . , en} is a basis of ker T , and verify The-
orem 7.2.5.

a. T : R3 → R4; T (x, y, z) = (x− y+ 2z, x+ y−
z, 2x+ z, 2y−3z)

b. T : R3 → R4; T (x, y, z) = (x+ y+ z, 2x− y+
3z, z−3y, 3x+4z)
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b. ker T = span{(−4, 1, 3)}; B =
{(1, 0, 0), (0, 1, 0), (−4, 1, 3)}, im T =
span{(1, 2, 0, 3), (1, −1, −3, 0)}

Exercise 7.2.5 Show that every matrix X in Mnn

has the form X = AT −2A for some matrix A in Mnn.
[Hint: The dimension theorem.]

Exercise 7.2.6 In each case either prove the
statement or give an example in which it is false.
Throughout, let T : V → W be a linear transforma-
tion where V and W are finite dimensional.

a. If V =W , then ker T ⊆ im T .

b. If dim V = 5, dim W = 3, and dim (ker T ) = 2,
then T is onto.

c. If dim V = 5 and dim W = 4, then ker T 6= {0}.

d. If ker T =V , then W = {0}.

e. If W = {0}, then ker T =V .

f. If W =V , and im T ⊆ ker T , then T = 0.

g. If {e1, e2, e3} is a basis of V and
T (e1) = 0 = T (e2), then dim ( im T )≤ 1.

h. If dim (ker T ) ≤ dim W , then dim W ≥
1
2 dim V .

i. If T is one-to-one, then dim V ≤ dim W .

j. If dim V ≤ dim W , then T is one-to-one.

k. If T is onto, then dim V ≥ dim W .

l. If dim V ≥ dim W , then T is onto.

m. If {T (v1), . . . , T (vk)} is independent, then
{v1, . . . , vk} is independent.

n. If {v1, . . . , vk} spans V , then
{T (v1), . . . , T (vk)} spans W .

b. Yes. dim ( im T ) = 5 − dim (ker T ) = 3, so
im T =W as dim W = 3.

d. No. T = 0 : R2 → R2

f. No. T : R2 → R2, T (x, y) = (y, 0). Then
ker T = im T

h. Yes. dim V = dim (ker T ) + dim ( im T ) ≤
dim W + dim W = 2 dim W

j. No. Consider T : R2 → R2 with T (x, y) =
(y, 0).

l. No. Same example as (j).

n. No. Define T : R2 → R2 by T (x, y) = (x, 0).
If v1 = (1, 0) and v2 = (0, 1), then R2 =
span{v1, v2} but R2 6= span{T (v1), T (v2)}.

Exercise 7.2.7 Show that linear independence is
preserved by one-to-one transformations and that
spanning sets are preserved by onto transformations.
More precisely, if T : V → W is a linear transforma-
tion, show that:

a. If T is one-to-one and {v1, . . . , vn} is inde-
pendent in V , then {T (v1), . . . , T (vn)} is in-
dependent in W .

b. If T is onto and V = span{v1, . . . , vn}, then
W = span{T (v1), . . . , T (vn)}.

b. Given w in W , let w = T (v), v in V , and
write v = r1v1 + · · ·+ rnvn. Then w = T (v) =
r1T (v1)+ · · ·+ rnT (vn).

Exercise 7.2.8 Given {v1, . . . , vn} in a vec-
tor space V , define T : Rn → V by T (r1, . . . , rn) =
r1v1 + · · ·+ rnvn. Show that T is linear, and that:

a. T is one-to-one if and only if {v1, . . . , vn} is
independent.

b. T is onto if and only if V = span{v1, . . . , vn}.

b. im T = {∑i rivi | ri in R}= span{vi}.
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Exercise 7.2.9 Let T : V → V be a linear trans-
formation where V is finite dimensional. Show that
exactly one of (i) and (ii) holds: (i) T (v) = 0 for
some v 6= 0 in V ; (ii) T (x) = v has a solution x in V
for every v in V .

Exercise 7.2.10 Let T : Mnn →R denote the trace
map: T (A) = tr A for all A in Mnn. Show that
dim (ker T ) = n2 −1.
T is linear and onto. Hence 1 = dim R =
dim ( im T ) = dim (Mnn) − dim (ker T ) = n2 −
dim (ker T ).

Exercise 7.2.11 Show that the following are equiv-
alent for a linear transformation T : V →W .

ker T =V1. im T = {0}2.
T = 03.

Exercise 7.2.12 Let A and B be m× n and k× n
matrices, respectively. Assume that Ax = 0 im-
plies Bx = 0 for every n-column x. Show that
rank A ≥ rank B.
[Hint: Theorem 7.2.4.]
The condition means ker (TA) ⊆ ker (TB), so
dim [ker (TA)] ≤ dim [ker (TB)]. Then Theorem 7.2.4
gives dim [ im (TA)]≥ dim [ im (TB)]; that is, rank A ≥
rank B.

Exercise 7.2.13 Let A be an m × n matrix of
rank r. Thinking of Rn as rows, define V = {x in
Rm | xA = 0}. Show that dim V = m− r.

Exercise 7.2.14 Consider

V =

{[
a b
c d

]∣∣∣∣a+ c = b+d
}

a. Consider S : M22 → R with S
[

a b
c d

]
= a+

c−b−d. Show that S is linear and onto and
that V is a subspace of M22. Compute dim V .

b. Consider T : V → R with T
[

a b
c d

]
= a+ c.

Show that T is linear and onto, and use this
information to compute dim (ker T ).

Exercise 7.2.15 Define T : Pn → R by T [p(x)] =
the sum of all the coefficients of p(x).

a. Use the dimension theorem to show that
dim (ker T ) = n.

b. Conclude that {x− 1, x2 − 1, . . . , xn − 1} is a
basis of ker T .

b. B= {x−1, . . . , xn−1} is independent (distinct
degrees) and contained in ker T . Hence B is a
basis of ker T by (a).

Exercise 7.2.16 Use the dimension theorem to
prove Theorem 1.3.1: If A is an m× n matrix with
m < n, the system Ax = 0 of m homogeneous equa-
tions in n variables always has a nontrivial solution.

Exercise 7.2.17 Let B be an n×n matrix, and con-
sider the subspaces U = {A | A in Mmn, AB = 0} and
V = {AB | A in Mmn}. Show that dim U + dim V =
mn.

Exercise 7.2.18 Let U and V denote, respec-
tively, the spaces of even and odd polynomials in Pn.
Show that dim U + dim V = n+ 1. [Hint: Consider
T : Pn → Pn where T [p(x)] = p(x)− p(−x).]

Exercise 7.2.19 Show that every polynomial f (x)
in Pn−1 can be written as f (x) = p(x + 1)− p(x)
for some polynomial p(x) in Pn. [Hint: Define
T : Pn → Pn−1 by T [p(x)] = p(x+1)− p(x).]

Exercise 7.2.20 Let U and V denote the spaces of
symmetric and skew-symmetric n×n matrices. Show
that dim U + dim V = n2.
Define T : Mnn → Mnn by T (A) = A−AT for all A
in Mnn. Then ker T = U and im T = V by Ex-
ample 7.2.3, so the dimension theorem gives n2 =
dim Mnn = dim (U)+ dim (V ).

Exercise 7.2.21 Assume that B in Mnn satisfies
Bk = 0 for some k ≥ 1. Show that every matrix in
Mnn has the form BA−A for some A in Mnn. [Hint:
Show that T : Mnn → Mnn is linear and one-to-one
where
T (A) = BA−A for each A.]

Exercise 7.2.22 Fix a column y 6= 0 in Rn and let
U = {A in Mnn | Ay = 0}. Show that dim U =
n(n−1).
Define T : Mnn → Rn by T (A) = Ay for all A in
Mnn. Then T is linear with ker T = U , so it
is enough to show that T is onto (then dim U =
n2 − dim ( im T ) = n2 − n). We have T (0) = 0.
Let y =

[
y1 y2 · · · yn

]T 6= 0 in Rn. If yk 6= 0
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let ck = y−1
k y, and let c j = 0 if j 6= k. If A =[

c1 c2 · · · cn
]
, then T (A) = Ay = y1c1 + · · ·+

ykck + · · ·+ yncn = y. This shows that T is onto, as
required.

Exercise 7.2.23 If B in Mmn has rank r, let U = {A
in Mnn |BA= 0} and W = {BA |A in Mnn}. Show that
dim U = n(n− r) and dim W = nr. [Hint: Show that
U consists of all matrices A whose columns are in the
null space of B. Use Example 7.2.7.]

Exercise 7.2.24 Let T : V →V be a linear transfor-
mation where dim V = n. If ker T ∩ im T = {0}, show
that every vector v in V can be written v=u+w for
some u in ker T and w in im T . [Hint: Choose bases
B ⊆ ker T and D ⊆ im T , and use Exercise 6.3.33.]

Exercise 7.2.25 Let T :Rn →Rn be a linear opera-
tor of rank 1, where Rn is written as rows. Show that
there exist numbers a1, a2, . . . , an and b1, b2, . . . , bn

such that T (X) = XA for all rows X in Rn, where

A =


a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn
...

...
...

anb1 anb2 · · · anbn


[Hint: im T = Rw for w = (b1, . . . , bn) in Rn.]

Exercise 7.2.26 Prove Theorem 7.2.5.

Exercise 7.2.27 Let T : V →R be a nonzero linear
transformation, where dim V = n. Show that there
is a basis {e1, . . . , en} of V so that T (r1e1 + r2e2 +
· · ·+ rnen) = r1.

Exercise 7.2.28 Let f 6= 0 be a fixed polynomial
of degree m ≥ 1. If p is any polynomial, recall that
(p◦ f )(x) = p [ f (x)]. Define Tf : Pn → Pn+m by
Tf (p) = p◦ f .

a. Show that Tf is linear.

b. Show that Tf is one-to-one.

Exercise 7.2.29 Let U be a subspace of a finite
dimensional vector space V .

a. Show that U = ker T for some linear operator
T : V →V .

b. Show that U = im S for some linear operator
S : V → V . [Hint: Theorem 6.4.1 and Theo-
rem 7.1.3.]

b. By Lemma 6.4.2, let {u1, . . . , um, . . . , un}
be a basis of V where {u1, . . . , um} is a ba-
sis of U . By Theorem 7.1.3 there is a linear
transformation S : V →V such that S(ui) = ui

for 1 ≤ i ≤ m, and S(ui) = 0 if i > m. Because
each ui is in im S, U ⊆ im S. But if S(v) is in
im S, write v = r1u1 + · · ·+ rmum + · · ·+ rnun.
Then S(v) = r1S(u1)+ · · ·+ rmS(um) = r1u1 +
· · ·+ rmum is in U . So im S ⊆U .

Exercise 7.2.30 Let V and W be finite dimensional
vector spaces.

a. Show that dim W ≤ dim V if and only if there
exists an onto linear transformation T : V →
W . [Hint: Theorem 6.4.1 and Theorem 7.1.3.]

b. Show that dim W ≥ dim V if and only if there
exists a one-to-one linear transformation T :
V → W . [Hint: Theorem 6.4.1 and Theo-
rem 7.1.3.]

Exercise 7.2.31 Let A and B be n×n matrices, and
assume that AXB = 0, X ∈ Mnn, implies X = 0. Show
that A and B are both invertible. [Hint: Dimension
Theorem.]
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7.3 Isomorphisms and Composition

Often two vector spaces can consist of quite different types of vectors but, on closer examination,
turn out to be the same underlying space displayed in different symbols. For example, consider the
spaces

R2 = {(a, b) | a, b ∈ R} and P1 = {a+bx | a, b ∈ R}

Compare the addition and scalar multiplication in these spaces:

(a, b)+(a1, b1) = (a+a1, b+b1) (a+bx)+(a1 +b1x) = (a+a1)+(b+b1)x
r(a, b) = (ra, rb) r(a+bx) = (ra)+(rb)x

Clearly these are the same vector space expressed in different notation: if we change each (a, b) in
R2 to a+bx, then R2 becomes P1, complete with addition and scalar multiplication. This can be
expressed by noting that the map (a, b) 7→ a+bx is a linear transformation R2 → P1 that is both
one-to-one and onto. In this form, we can describe the general situation.

Definition 7.4 Isomorphic Vector Spaces

A linear transformation T : V →W is called an isomorphism if it is both onto and
one-to-one. The vector spaces V and W are said to be isomorphic if there exists an
isomorphism T : V →W , and we write V ∼=W when this is the case.

Example 7.3.1

The identity transformation 1V : V →V is an isomorphism for any vector space V .

Example 7.3.2

If T : Mmn → Mnm is defined by T (A) = AT for all A in Mmn, then T is an isomorphism
(verify). Hence Mmn ∼= Mnm.

Example 7.3.3

Isomorphic spaces can “look” quite different. For example, M22 ∼= P3 because the map

T : M22 → P3 given by T
[

a b
c d

]
= a+bx+ cx2 +dx3 is an isomorphism (verify).

The word isomorphism comes from two Greek roots: iso, meaning “same,” and morphos, mean-
ing “form.” An isomorphism T : V →W induces a pairing

v ↔ T (v)
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between vectors v in V and vectors T (v) in W that preserves vector addition and scalar multiplica-
tion. Hence, as far as their vector space properties are concerned, the spaces V and W are identical
except for notation. Because addition and scalar multiplication in either space are completely de-
termined by the same operations in the other space, all vector space properties of either space are
completely determined by those of the other.

One of the most important examples of isomorphic spaces was considered in Chapter 4. Let A
denote the set of all “arrows” with tail at the origin in space, and make A into a vector space using
the parallelogram law and the scalar multiple law (see Section 4.1). Then define a transformation
T : R3 → A by taking

T

 x
y
z

= the arrow v from the origin to the point P(x, y, z).

In Section 4.1 matrix addition and scalar multiplication were shown to correspond to the parallelo-
gram law and the scalar multiplication law for these arrows, so the map T is a linear transformation.
Moreover T is an isomorphism: it is one-to-one by Theorem 4.1.2, and it is onto because, given an

arrow v in A with tip P(x, y, z), we have T

 x
y
z

 = v. This justifies the identification v =

 x
y
z


in Chapter 4 of the geometric arrows with the algebraic matrices. This identification is very useful.
The arrows give a “picture” of the matrices and so bring geometric intuition into R3; the matrices
are useful for detailed calculations and so bring analytic precision into geometry. This is one of the
best examples of the power of an isomorphism to shed light on both spaces being considered.

The following theorem gives a very useful characterization of isomorphisms: They are the linear
transformations that preserve bases.

Theorem 7.3.1
If V and W are finite dimensional spaces, the following conditions are equivalent for a linear
transformation T : V →W .

1. T is an isomorphism.

2. If {e1, e2, . . . , en} is any basis of V , then {T (e1), T (e2), . . . , T (en)} is a basis of W .

3. There exists a basis {e1, e2, . . . , en} of V such that {T (e1), T (e2), . . . , T (en)} is a
basis of W .

Proof. (1) ⇒ (2). Let {e1, . . . , en} be a basis of V . If t1T (e1)+ · · ·+ tnT (en) = 0 with ti in R, then
T (t1e1 + · · ·+ tnen) = 0, so t1e1 + · · ·+ tnen = 0 (because ker T = {0}). But then each ti = 0 by the
independence of the ei, so {T (e1), . . . , T (en)} is independent. To show that it spans W , choose w
in W . Because T is onto, w = T (v) for some v in V , so write v = t1e1 + · · ·+ tnen. Hence we obtain
w = T (v) = t1T (e1)+ · · ·+ tnT (en), proving that {T (e1), . . . , T (en)} spans W .

(2) ⇒ (3). This is because V has a basis.
(3) ⇒ (1). If T (v) = 0, write v = v1e1 + · · ·+ vnen where each vi is in R. Then

0 = T (v) = v1T (e1)+ · · ·+ vnT (en)
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so v1 = · · · = vn = 0 by (3). Hence v = 0, so ker T = {0} and T is one-to-one. To show that T is
onto, let w be any vector in W . By (3) there exist w1, . . . , wn in R such that

w = w1T (e1)+ · · ·+wnT (en) = T (w1e1 + · · ·+wnen)

Thus T is onto.

Theorem 7.3.1 dovetails nicely with Theorem 7.1.3 as follows. Let V and W be vector spaces
of dimension n, and suppose that {e1, e2, . . . , en} and {f1, f2, . . . , fn} are bases of V and W ,
respectively. Theorem 7.1.3 asserts that there exists a linear transformation T : V →W such that

T (ei) = fi for each i = 1, 2, . . . , n

Then {T (e1), . . . , T (en)} is evidently a basis of W , so T is an isomorphism by Theorem 7.3.1.
Furthermore, the action of T is prescribed by

T (r1e1 + · · ·+ rnen) = r1f1 + · · ·+ rnfn

so isomorphisms between spaces of equal dimension can be easily defined as soon as bases are known.
In particular, this shows that if two vector spaces V and W have the same dimension then they are
isomorphic, that is V ∼=W . This is half of the following theorem.

Theorem 7.3.2
If V and W are finite dimensional vector spaces, then V ∼=W if and only if dim V = dim W .

Proof. It remains to show that if V ∼= W then dim V = dim W . But if V ∼= W , then there exists
an isomorphism T : V → W . Since V is finite dimensional, let {e1, . . . , en} be a basis of V . Then
{T (e1), . . . , T (en)} is a basis of W by Theorem 7.3.1, so dim W = n = dim V .

Corollary 7.3.1

Let U , V , and W denote vector spaces. Then:

1. V ∼=V for every vector space V .

2. If V ∼=W then W ∼=V .

3. If U ∼=V and V ∼=W , then U ∼=W .

The proof is left to the reader. By virtue of these properties, the relation ∼= is called an equivalence
relation on the class of finite dimensional vector spaces. Since dim (Rn) = n it follows that

Corollary 7.3.2

If V is a vector space and dim V = n, then V is isomorphic to Rn.
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If V is a vector space of dimension n, note that there are important explicit isomorphisms
V → Rn. Fix a basis B = {b1, b2, . . . , bn} of V and write {e1, e2, . . . , en} for the standard basis
of Rn. By Theorem 7.1.3 there is a unique linear transformation CB : V → Rn given by

CB(v1b1 + v2b2 + · · ·+ vnbn) = v1e1 + v2e2 + · · ·+ vnen =


v1
v2
...

vn


where each vi is in R. Moreover, CB(bi) = ei for each i so CB is an isomorphism by Theorem 7.3.1,
called the coordinate isomorphism corresponding to the basis B. These isomorphisms will play
a central role in Chapter ??.

The conclusion in the above corollary can be phrased as follows: As far as vector space properties
are concerned, every n-dimensional vector space V is essentially the same as Rn; they are the “same”
vector space except for a change of symbols. This appears to make the process of abstraction seem
less important—just study Rn and be done with it! But consider the different “feel” of the spaces P8
and M33 even though they are both the “same” as R9: For example, vectors in P8 can have roots,
while vectors in M33 can be multiplied. So the merit in the abstraction process lies in identifying
common properties of the vector spaces in the various examples. This is important even for finite
dimensional spaces. However, the payoff from abstraction is much greater in the infinite dimensional
case, particularly for spaces of functions.

Example 7.3.4

Let V denote the space of all 2×2 symmetric matrices. Find an isomorphism T : P2 →V
such that T (1) = I, where I is the 2×2 identity matrix.

Solution. {1, x, x2} is a basis of P2, and we want a basis of V containing I. The set{[
1 0
0 1

]
,
[

0 1
1 0

]
,
[

0 0
0 1

]}
is independent in V , so it is a basis because dim V = 3 (by

Example 6.3.11). Hence define T : P2 →V by taking T (1) =
[

1 0
0 1

]
, T (x) =

[
0 1
1 0

]
,

T (x2) =

[
0 0
0 1

]
, and extending linearly as in Theorem 7.1.3. Then T is an isomorphism by

Theorem 7.3.1, and its action is given by

T (a+bx+ cx2) = aT (1)+bT (x)+ cT (x2) =

[
a b
b a+ c

]

The dimension theorem (Theorem 7.2.4) gives the following useful fact about isomorphisms.

Theorem 7.3.3
If V and W have the same dimension n, a linear transformation T : V →W is an
isomorphism if it is either one-to-one or onto.
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Proof. The dimension theorem asserts that dim (ker T )+ dim ( im T ) = n, so dim (ker T ) = 0 if and
only if dim ( im T ) = n. Thus T is one-to-one if and only if T is onto, and the result follows.

Composition

Suppose that T : V → W and S : W → U are linear transformations. They link together as in the
diagram so, as in Section 2.3, it is possible to define a new function V →U by first applying T and
then S.

Definition 7.5 Composition of Linear Transformations

T S

V W U

Given linear transformations V T−→W S−→U , the composite
ST : V →U of T and S is defined by

ST (v) = S [T (v)] for all v in V

The operation of forming the new function ST is called
composition.1

The action of ST can be described compactly as follows: ST means first T then S.
Not all pairs of linear transformations can be composed. For example, if T :V →W and S :W →U

are linear transformations then ST :V →U is defined, but T S cannot be formed unless U =V because
S : W →U and T : V →W do not “link” in that order.2

Moreover, even if ST and T S can both be formed, they may not be equal. In fact, if S : Rm →Rn

and T : Rn →Rm are induced by matrices A and B respectively, then ST and T S can both be formed
(they are induced by AB and BA respectively), but the matrix products AB and BA may not be
equal (they may not even be the same size). Here is another example.

Example 7.3.5

Define: S : M22 → M22 and T : M22 → M22 by S
[

a b
c d

]
=

[
c d
a b

]
and T (A) = AT for

A ∈ M22. Describe the action of ST and T S, and show that ST 6= T S.

Solution. ST
[

a b
c d

]
= S

[
a c
b d

]
=

[
b d
a c

]
, whereas

T S
[

a b
c d

]
= T

[
c d
a b

]
=

[
c a
d b

]
.

It is clear that T S
[

a b
c d

]
need not equal ST

[
a b
c d

]
, so T S 6= ST .

The next theorem collects some basic properties of the composition operation.
1In Section 2.3 we denoted the composite as S◦T . However, it is more convenient to use the simpler notation ST .
2Actually, all that is required is U ⊆V .
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Theorem 7.3.4: 3

Let V T−→W S−→U R−→ Z be linear transformations.

1. The composite ST is again a linear transformation.

2. T 1V = T and 1W T = T .

3. (RS)T = R(ST ).

Proof. The proofs of (1) and (2) are left as Exercise 7.3.25. To prove (3), observe that, for all v in
V :

{(RS)T}(v) = (RS) [T (v)] = R{S [T (v)]}= R{(ST )(v)}= {R(ST )}(v)

Up to this point, composition seems to have no connection with isomorphisms. In fact, the two
notions are closely related.

Theorem 7.3.5
Let V and W be finite dimensional vector spaces. The following conditions are equivalent for
a linear transformation T : V →W .

1. T is an isomorphism.

2. There exists a linear transformation S : W →V such that ST = 1V and T S = 1W .

Moreover, in this case S is also an isomorphism and is uniquely determined by T :

If w in W is written as w = T (v), then S(w) = v.

Proof. (1) ⇒ (2). If B = {e1, . . . , en} is a basis of V , then D = {T (e1), . . . , T (en)} is a basis of W
by Theorem 7.3.1. Hence (using Theorem 7.1.3), define a linear transformation S : W →V by

S[T (ei)] = ei for each i (7.2)

Since ei = 1V (ei), this gives ST = 1V by Theorem 7.1.2. But applying T gives T [S [T (ei)]] = T (ei)
for each i, so T S = 1W (again by Theorem 7.1.2, using the basis D of W ).

(2) ⇒ (1). If T (v) = T (v1), then S [T (v)] = S [T (v1)]. Because ST = 1V by (2), this reads v= v1;
that is, T is one-to-one. Given w in W , the fact that T S = 1W means that w = T [S(w)], so T is
onto.

3Theorem 7.3.4 can be expressed by saying that vector spaces and linear transformations are an example of a
category. In general a category consists of certain objects and, for any two objects X and Y , a set mor (X , Y ). The
elements α of mor (X , Y ) are called morphisms from X to Y and are written α : X → Y . It is assumed that identity
morphisms and composition are defined in such a way that Theorem 7.3.4 holds. Hence, in the category of vector
spaces the objects are the vector spaces themselves and the morphisms are the linear transformations. Another
example is the category of metric spaces, in which the objects are sets equipped with a distance function (called a
metric), and the morphisms are continuous functions (with respect to the metric). The category of sets and functions
is a very basic example.
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Finally, S is uniquely determined by the condition ST = 1V because this condition implies (7.2).
S is an isomorphism because it carries the basis D to B. As to the last assertion, given w in W ,
write w = r1T (e1)+ · · ·+ rnT (en). Then w = T (v), where v = r1e1 + · · ·+ rnen. Then S(w) = v by
(7.2).

Given an isomorphism T : V →W , the unique isomorphism S : W →V satisfying condition (2) of
Theorem 7.3.5 is called the inverse of T and is denoted by T−1. Hence T : V →W and T−1 : W →V
are related by the fundamental identities:

T−1 [T (v)] = v for all v in V and T
[
T−1(w)

]
= w for all w in W

In other words, each of T and T−1 reverses the action of the other. In particular, equation (7.2) in the
proof of Theorem 7.3.5 shows how to define T−1 using the image of a basis under the isomorphism
T . Here is an example.

Example 7.3.6

Define T : P1 → P1 by T (a+bx) = (a−b)+ax. Show that T has an inverse, and find the
action of T−1.

Solution. The transformation T is linear (verify). Because T (1) = 1+ x and T (x) =−1, T
carries the basis B = {1, x} to the basis D = {1+ x, −1}. Hence T is an isomorphism, and
T−1 carries D back to B, that is,

T−1(1+ x) = 1 and T−1(−1) = x

Because a+bx = b(1+ x)+(b−a)(−1), we obtain

T−1(a+bx) = bT−1(1+ x)+(b−a)T−1(−1) = b+(b−a)x

Sometimes the action of the inverse of a transformation is apparent.

Example 7.3.7

If B = {b1, b2, . . . , bn} is a basis of a vector space V , the coordinate transformation
CB : V → Rn is an isomorphism defined by

CB(v1b1 + v2b2 + · · ·+ vnbn) = (v1, v2, . . . , vn)
T

The way to reverse the action of CB is clear: C−1
B : Rn →V is given by

C−1
B (v1, v2, . . . , vn) = v1b1 + v2b2 + · · ·+ vnbn for all vi in V

Condition (2) in Theorem 7.3.5 characterizes the inverse of a linear transformation T : V →W as
the (unique) transformation S : W →V that satisfies ST = 1V and T S = 1W . This often determines
the inverse.
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Example 7.3.8

Define T : R3 → R3 by T (x, y, z) = (z, x, y). Show that T 3 = 1R3 , and hence find T−1.

Solution. T 2(x, y, z) = T [T (x, y, z)] = T (z, x, y) = (y, z, x). Hence

T 3(x, y, z) = T
[
T 2(x, y, z)

]
= T (y, z, x) = (x, y, z)

Since this holds for all (x, y, z), it shows that T 3 = 1R3 , so T (T 2) = 1R3 = (T 2)T . Thus
T−1 = T 2 by (2) of Theorem 7.3.5.

Example 7.3.9

Define T : Pn →Rn+1 by T (p) = (p(0), p(1), . . . , p(n)) for all p in Pn. Show that T−1 exists.

Solution. The verification that T is linear is left to the reader. If T (p) = 0, then p(k) = 0
for k = 0, 1, . . . , n, so p has n+1 distinct roots. Because p has degree at most n, this
implies that p = 0 is the zero polynomial (Theorem ??) and hence that T is one-to-one. But
dim Pn = n+1 = dim Rn+1, so this means that T is also onto and hence is an isomorphism.
Thus T−1 exists by Theorem 7.3.5. Note that we have not given a description of the action
of T−1, we have merely shown that such a description exists. To give it explicitly requires
some ingenuity; one method involves the Lagrange interpolation expansion (Theorem ??).

Exercises for 7.3

Exercise 7.3.1 Verify that each of the following is
an isomorphism (Theorem 7.3.3 is useful).

a. T : R3 → R3; T (x, y, z) = (x+ y, y+ z, z+ x)

b. T : R3 → R3; T (x, y, z) = (x, x+ y, x+ y+ z)

c. T : C→ C; T (z) = z

d. T : Mmn → Mmn; T (X) = UXV , U and V in-
vertible

e. T : P1 → R2; T [p(x)] = [p(0), p(1)]

f. T : V →V ; T (v) = kv, k 6= 0 a fixed number, V
any vector space

g. T : M22 →R4; T
[

a b
c d

]
= (a+b, d, c, a−b)

h. T : Mmn → Mnm; T (A) = AT

b. T is onto because T (1, −1, 0) = (1, 0, 0),
T (0, 1, −1) = (0, 1, 0), and T (0, 0, 1) =
(0, 0, 1). Use Theorem 7.3.3.

d. T is one-to-one because 0 = T (X) = UXV im-
plies that X = 0 (U and V are invertible). Use
Theorem 7.3.3.

f. T is one-to-one because 0 = T (v) = kv implies
that v = 0 (because k 6= 0). T is onto because
T
(1

k v
)
=v for all v. [Here Theorem 7.3.3 does

not apply if dim V is not finite.]

h. T is one-to-one because T (A) = 0 implies AT =
0, whence A = 0. Use Theorem 7.3.3.
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Exercise 7.3.2 Show that

{a+bx+ cx2, a1 +b1x+ c1x2, a2 +b2x+ c2x2}

is a basis of P2 if and only if
{(a, b, c), (a1, b1, c1), (a2, b2, c2)} is a basis of R3.

Exercise 7.3.3 If V is any vector space, let V n

denote the space of all n-tuples (v1, v2, . . . , vn),
where each vi lies in V . (This is a vector space with
component-wise operations; see Exercise 6.1.17.) If
C j(A) denotes the jth column of the m×n matrix A,
show that T : Mmn → (Rm)n is an isomorphism if
T (A) =

[
C1(A) C2(A) · · · Cn(A)

]
. (Here Rm con-

sists of columns.)

Exercise 7.3.4 In each case, compute the action
of ST and T S, and show that ST 6= T S.

a. S : R2 → R2 with S(x, y) = (y, x); T : R2 → R2

with T (x, y) = (x, 0)

b. S : R3 → R3 with S(x, y, z) = (x, 0, z);
T : R3 → R3 with T (x, y, z) = (x+ y, 0, y+ z)

c. S : P2 → P2 with S(p) = p(0)+ p(1)x+ p(2)x2;
T : P2 → P2 with T (a+bx+cx2) = b+cx+ax2

d. S : M22 → M22 with S
[

a b
c d

]
=

[
a 0
0 d

]
;

T : M22 → M22 with T
[

a b
c d

]
=

[
c a
d b

]

b. ST (x, y, z) = (x+ y, 0, y+ z), T S(x, y, z) =
(x, 0, z)

d. ST
[

a b
c d

]
=

[
c 0
0 d

]
, T S

[
a b
c d

]
=[

0 a
d 0

]
Exercise 7.3.5 In each case, show that the linear
transformation T satisfies T 2 = T .

a. T : R4 → R4; T (x, y, z, w) = (x, 0, z, 0)

b. T : R2 → R2; T (x, y) = (x+ y, 0)

c. T : P2 → P2;
T (a+bx+ cx2) = (a+b− c)+ cx+ cx2

d. T : M22 → M22;

T
[

a b
c d

]
= 1

2

[
a+ c b+d
a+ c b+d

]

b. T 2(x, y) = T (x+ y, 0) = (x+ y, 0) = T (x, y).
Hence T 2 = T .

d. T 2
[

a b
c d

]
= 1

2 T
[

a+ c b+d
a+ c b+d

]
=

1
2

[
a+ c b+d
a+ c b+d

]
Exercise 7.3.6 Determine whether each of the fol-
lowing transformations T has an inverse and, if so,
determine the action of T−1.

a. T : R3 → R3;
T (x, y, z) = (x+ y, y+ z, z+ x)

b. T : R4 → R4;
T (x, y, z, t) = (x+ y, y+ z, z+ t, t + x)

c. T : M22 → M22;

T
[

a b
c d

]
=

[
a− c b−d
2a− c 2b−d

]
d. T : M22 → M22;

T
[

a b
c d

]
=

[
a+2c b+2d
3c−a 3d −b

]
e. T : P2 →R3; T (a+bx+cx2) = (a−c, 2b, a+c)

f. T : P2 → R3; T (p) = [p(0), p(1), p(−1)]

b. No inverse; (1, −1, 1, −1) is in ker T .

d. T−1
[

a b
c d

]
= 1

5

[
3a−2c 3b−2d
a+ c b+d

]
f. T−1(a, b, c) = 1

2

[
2a+(b− c)x− (2a−b− c)x2

]
Exercise 7.3.7 In each case, show that T is self-
inverse, that is: T−1 = T .

a. T : R4 → R4; T (x, y, z, w) = (x, −y, −z, w)

b. T : R2 → R2; T (x, y) = (ky− x, y), k any fixed
number

c. T : Pn → Pn; T (p(x)) = p(3− x)
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d. T : M22 → M22; T (X) = AX where

A = 1
4

[
5 −3
3 −5

]

b. T 2(x, y) = T (ky− x, y) = (ky− (ky− x), y) =
(x, y)

d. T 2(X) = A2X = IX = X

Exercise 7.3.8 In each case, show that T 6 = 1R4

and so determine T−1.

a. T : R4 → R4; T (x, y, z, w) = (−x, z, w, y)

b. T : R4 →R4; T (x, y, z, w) = (−y, x−y, z, −w)

b. T 3(x, y, z, w)= (x, y, z, −w) so T 6(x, y, z, w)=
T 3

[
T 3(x, y, z, w)

]
= (x, y, z, w). Hence T−1 =

T 5. So T−1(x, y, z, w) = (y− x, −x, z, −w).

Exercise 7.3.9 In each case, show that T is an
isomorphism by defining T−1 explicitly.

a. T : Pn → Pn is given by T [p(x)] = p(x+1).

b. T : Mnn → Mnn is given by T (A) = UA where
U is invertible in Mnn.

b. T−1(A) =U−1A.

Exercise 7.3.10 Given linear transformations
V T−→W S−→U :

a. If S and T are both one-to-one, show that ST
is one-to-one.

b. If S and T are both onto, show that ST is onto.

b. Given u in U , write u = S(w), w in W (be-
cause S is onto). Then write w = T (v), v in V
(T is onto). Hence u = ST (v), so ST is onto.

Exercise 7.3.11 Let T : V →W be a linear trans-
formation.

a. If T is one-to-one and T R = T R1 for transfor-
mations R and R1 : U →V , show that R = R1.

b. If T is onto and ST = S1T for transformations
S and S1 : W →U , show that S = S1.

Exercise 7.3.12 Consider the linear transforma-
tions V T−→W R−→U .

a. Show that ker T ⊆ ker RT .

b. Show that im RT ⊆ im R.

b. For all v in V , (RT )(v) = R [T (v)] is in im (R).

Exercise 7.3.13 Let V T−→U S−→W be linear trans-
formations.

a. If ST is one-to-one, show that T is one-to-one
and that dim V ≤ dim U .

b. If ST is onto, show that S is onto and that
dim W ≤ dim U .

b. Given w in W , write w = ST (v), v in V (ST
is onto). Then w = S [T (v)], T (v) in U , so
S is onto. But then im S = W , so dim U =
dim (ker S)+ dim ( im S)≥ dim ( im S)= dim W .

Exercise 7.3.14 Let T : V → V be a linear trans-
formation. Show that T 2 = 1V if and only if T is
invertible and T = T−1.

Exercise 7.3.15 Let N be a nilpotent n×n matrix
(that is, Nk = 0 for some k). Show that T : Mnm →
Mnm is an isomorphism if T (X) = X −NX . [Hint: If
X is in ker T , show that X = NX = N2X = · · · . Then
use Theorem 7.3.3.]

Exercise 7.3.16 Let T : V →W be a linear trans-
formation, and let {e1, . . . , er, er+1, . . . , en} be any
basis of V such that {er+1, . . . , en} is a basis of ker T .



7.3. Isomorphisms and Composition 395

Show that im T ∼= span{e1, . . . , er}. [Hint: See The-
orem 7.2.5.]
{T (e1), T (e2), . . . , T (er)} is a basis of im T by The-
orem 7.2.5. So T : span{e1, . . . , er} → im T is an
isomorphism by Theorem 7.3.1.

Exercise 7.3.17 Is every isomorphism T : M22 →
M22 given by an invertible matrix U such that
T (X) =UX for all X in M22? Prove your answer.

Exercise 7.3.18 Let Dn denote the space of all
functions f from {1, 2, . . . , n} to R (see Exer-
cise 6.3.35). If T : Dn → Rn is defined by

T ( f ) = ( f (1), f (2), . . . , f (n)),

show that T is an isomorphism.

Exercise 7.3.19

a. Let V be the vector space of Exercise 6.1.3.
Find an isomorphism T : V → R1.

b. Let V be the vector space of Exercise 6.1.4.
Find an isomorphism T : V → R2.

b. T (x, y) = (x, y+1)

Exercise 7.3.20 Let V T−→W S−→V be linear trans-
formations such that ST = 1V . If dim V = dim W = n,
show that S = T−1 and T = S−1. [Hint: Exer-
cise 7.3.13 and Theorem 7.3.3, Theorem 7.3.4, and
Theorem 7.3.5.]

Exercise 7.3.21 Let V T−→W S−→V be functions such
that T S = 1W and ST = 1V . If T is linear, show that
S is also linear.

Exercise 7.3.22 Let A and B be matrices of size
p × m and n × q. Assume that mn = pq. Define
R : Mmn → Mpq by R(X) = AXB.

a. Show that Mmn ∼= Mpq by comparing dimen-
sions.

b. Show that R is a linear transformation.

c. Show that if R is an isomorphism, then m = p
and n = q. [Hint: Show that T : Mmn → Mpn

given by T (X) = AX and S : Mmn → Mmq given
by S(X) = XB are both one-to-one, and use the
dimension theorem.]

Exercise 7.3.23 Let T : V →V be a linear transfor-
mation such that T 2 = 0 is the zero transformation.

a. If V 6= {0}, show that T cannot be invertible.

b. If R : V →V is defined by R(v) = v+T (v) for
all v in V , show that R is linear and invertible.

Exercise 7.3.24 Let V consist of all sequences
[x0, x1, x2, . . .) of numbers, and define vector op-
erations

[xo, x1, . . .)+ [y0, y1, . . .) = [x0 + y0, x1 + y1, . . .)

r[x0, x1, . . .) = [rx0, rx1, . . .)

a. Show that V is a vector space of infinite di-
mension.

b. Define T : V → V and S : V → V by
T [x0, x1, . . .) = [x1, x2, . . .) and
S[x0, x1, . . .) = [0, x0, x1, . . .). Show that
T S = 1V , so T S is one-to-one and onto, but
that T is not one-to-one and S is not onto.

b. T S[x0, x1, . . .) = T [0, x0, x1, . . .) = [x0, x1, . . .),
so T S = 1V . Hence T S is both onto and one-
to-one, so T is onto and S is one-to-one by
Exercise 7.3.13. But [1, 0, 0, . . .) is in ker T
while [1, 0, 0, . . .) is not in im S.

Exercise 7.3.25 Prove (1) and (2) of Theo-
rem 7.3.4.

Exercise 7.3.26 Define T : Pn → Pn by
T (p) = p(x)+ xp′(x) for all p in Pn.

a. Show that T is linear.

b. Show that ker T = {0} and conclude that
T is an isomorphism. [Hint: Write p(x) =
a0 + a1x+ · · ·+ anxn and compare coefficients
if p(x) =−xp′(x).]

c. Conclude that each q(x) in Pn has the form
q(x) = p(x) + xp′(x) for some unique polyno-
mial p(x).

d. Does this remain valid if T is defined by
T [p(x)] = p(x)− xp′(x)? Explain.
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b. If T (p) = 0, then p(x) = −xp′(x). We write
p(x) = a0 + a1x + a2x2 + · · ·+ anxn, and this
becomes a0 + a1x+ a2x2 + · · ·+ anxn = −a1x−
2a2x2−·· ·−nanxn. Equating coefficients yields
a0 = 0, 2a1 = 0, 3a2 = 0, . . . , (n + 1)an = 0,
whence p(x) = 0. This means that ker T = 0,
so T is one-to-one. But then T is an isomor-
phism by Theorem 7.3.3.

Exercise 7.3.27 Let T : V →W be a linear trans-
formation, where V and W are finite dimensional.

a. Show that T is one-to-one if and only if there
exists a linear transformation S : W → V with
ST = 1V . [Hint: If {e1, . . . , en} is a basis of
V and T is one-to-one, show that W has a ba-
sis {T (e1), . . . , T (en), fn+1, . . . , fn+k} and use
Theorem 7.1.2 and Theorem 7.1.3.]

b. Show that T is onto if and only if there exists a
linear transformation S : W →V with T S = 1W .
[Hint: Let {e1, . . . , er, . . . , en} be a basis of
V such that {er+1, . . . , en} is a basis of ker T .
Use Theorem 7.2.5, Theorem 7.1.2 and Theo-
rem 7.1.3.]

b. If ST = 1V for some S, then T is onto by Exer-
cise 7.3.13. If T is onto, let {e1, . . . , er, . . . , en}
be a basis of V such that {er+1, . . . , en}
is a basis of ker T . Since T is onto,
{T (e1), . . . , T (er)} is a basis of im T = W
by Theorem 7.2.5. Thus S : W → V is an
isomorphism where by S{T (ei)] = ei for i =
1, 2, . . . , r. Hence T S[T (ei)] = T (ei) for each
i, that is T S[T (ei)] = 1W [T (ei)]. This means
that T S = 1W because they agree on the basis
{T (e1), . . . , T (er)} of W .

Exercise 7.3.28 Let S and T be linear transfor-
mations V →W , where dim V = n and dim W = m.

a. Show that ker S = ker T if and only if T = RS
for some isomorphism R : W →W . [Hint: Let
{e1, . . . , er, . . . , en} be a basis of V such that

{er+1, . . . , en} is a basis of ker S = ker T . Use
Theorem 7.2.5 to extend {S(e1), . . . , S(er)}
and {T (e1), . . . , T (er)} to bases of W .]

b. Show that im S = im T if and only if
T = SR for some isomorphism R : V → V .
[Hint: Show that dim (ker S) = dim (ker T )
and choose bases {e1, . . . , er, . . . , en} and
{f1, . . . , fr, . . . , fn} of V where {er+1, . . . , en}
and {fr+1, . . . , fn} are bases of ker S and
ker T , respectively. If 1 ≤ i ≤ r, show that
S(ei) = T (gi) for some gi in V , and prove that
{g1, . . . , gr, fr+1, . . . , fn} is a basis of V .]

b. If T = SR, then every vector T (v) in im T has
the form T (v) = S[R(v)], whence im T ⊆ im S.
Since R is invertible, S = T R−1 implies im S ⊆
im T . Conversely, assume that im S = im T .
Then dim (ker S) = dim (ker T ) by the dimen-
sion theorem. Let {e1, . . . , er, er+1, . . . , en}
and {f1, . . . , fr, fr+1, . . . , fn} be bases of V
such that {er+1, . . . , en} and {fr+1, . . . , fn}
are bases of ker S and ker T , respectively.
By Theorem 7.2.5, {S(e1), . . . , S(er)} and
{T (f1), . . . , T (fr)} are both bases of im S =
im T . So let g1, . . . , gr in V be such that
S(ei) = T (gi) for each i = 1, 2, . . . , r. Show
that

B = {g1, . . . , gr, fr+1, . . . , fn} is a basis of V .

Then define R : V → V by R(gi) = ei for i =
1, 2, . . . , r, and R(f j) = e j for j = r+1, . . . , n.
Then R is an isomorphism by Theorem 7.3.1.
Finally SR = T since they have the same effect
on the basis B.

Exercise 7.3.29 If T : V → V is a linear trans-
formation where dim V = n, show that T ST = T
for some isomorphism S : V → V . [Hint: Let
{e1, . . . , er, er+1, . . . , en} be as in Theorem 7.2.5.
Extend {T (e1), . . . , T (er)} to a basis of V , and use
Theorem 7.3.1, Theorem 7.1.2 and Theorem 7.1.3.]

Let B = {e1, . . . , er, er+1, . . . , en} be a basis
of V with {er+1, . . . , en} a basis of ker T . If
{T (e1), . . . , T (er), wr+1, . . . , wn} is a basis of V ,
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define S by S[T (ei)] = ei for 1 ≤ i ≤ r, and S(w j) = e j

for r+1 ≤ j ≤ n. Then S is an isomorphism by The-
orem 7.3.1, and T ST (ei) = T (ei) clearly holds for
1 ≤ i ≤ r. But if i ≥ r+1, then T (ei) = 0 = T ST (ei),
so T = T ST by Theorem 7.1.2.

Exercise 7.3.30 Let A and B denote m×n matri-
ces. In each case show that (1) and (2) are equiva-
lent.

a. (1) A and B have the same null space. (2)
B = PA for some invertible m×m matrix P.

b. (1) A and B have the same range. (2) B = AQ
for some invertible n×n matrix Q.

[Hint: Use Exercise 7.3.28.]
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