

LINEAR ALGEBRA with Applications

Open Edition

ADAPTABLE | ACCESSIBLE | AFFORDABLE

Adapted for

Emory University

Math 221

Linear Algebra

Sections 1 & 2 Lectured and adapted by

Le Chen

April 15, 2021

le.chen@emory.edu
Course page
http://math.emory.edu/~lchen41/teaching/2021_Spring_Math221

by W. Keith Nicholson Creative Commons License (CC BY-NC-SA)

Contents

1	Systems of Linear Equations										
	1.1	Solutions and Elementary Operations	6								
	1.2	Gaussian Elimination	16								
	1.3	Homogeneous Equations	28								
	Sup	Supplementary Exercises for Chapter 1									
2	Matrix Algebra										
	2.1	Matrix Addition, Scalar Multiplication, and Transposition	40								
	2.2	Matrix-Vector Multiplication	53								
	2.3	Matrix Multiplication	72								
	2.4	Matrix Inverses	91								
	2.5	Elementary Matrices	109								
	2.6	Linear Transformations	119								
	2.7	LU-Factorization	135								
3	Determinants and Diagonalization										
	3.1	The Cofactor Expansion	148								
	3.2	Determinants and Matrix Inverses	163								
	3.3	Diagonalization and Eigenvalues	178								
	Sup	plementary Exercises for Chapter 3	201								
4	Vec	tor Geometry	203								
	4.1	Vectors and Lines	204								
	4.2	Projections and Planes	223								
	4.3	More on the Cross Product	244								
	4.4	Linear Operators on \mathbb{R}^3	251								
	Sup	plementary Exercises for Chapter 4	260								
5	Vector Space \mathbb{R}^n										
	5.1	Subspaces and Spanning	264								
	5.2	Independence and Dimension	273								
	5.3	Orthogonality	287								
	5.4	Rank of a Matrix	297								

$4 \equiv \text{CONTENTS}$

	5.5	Similarity and Diagonalization	7				
	Supplementary Exercises for Chapter 5						
6	Vec	tor Spaces 321	-				
	6.1	Examples and Basic Properties	2				
	6.2	Subspaces and Spanning Sets	3				
	6.3	Linear Independence and Dimension	2				
	6.4	Finite Dimensional Spaces	Ł				
	Supp	plementary Exercises for Chapter 6	Ł				
7	Line	ear Transformations 365	Ś				
	7.1	Examples and Elementary Properties	3				
	7.2	Kernel and Image of a Linear Transformation	Ł				
	7.3	Isomorphisms and Composition	;)				
8 Orthogonality							
8.1 Orthogonal Complements and Projections							
	8.2 Orthogonal Diagonalization						
8.3 Positive Definite Matrices							
8.4 QR-Factorization \ldots							
	8.5	Computing Eigenvalues	L				
	8.6 The Singular Value Decomposition						
		8.6.1 Singular Value Decompositions	;				
		8.6.2 Fundamental Subspaces	2				
		8.6.3 The Polar Decomposition of a Real Square Matrix	ý				
		8.6.4 The Pseudoinverse of a Matrix	7				

7. Linear Transformations

Contents

7.1	Examples and Elementary Properties	366
7.2	Kernel and Image of a Linear Transformation	374
7.3	Isomorphisms and Composition	385

If V and W are vector spaces, a function $T: V \to W$ is a rule that assigns to each vector \mathbf{v} in V a uniquely determined vector $T(\mathbf{v})$ in W. As mentioned in Section 2.2, two functions $S: V \to W$ and $T: V \to W$ are equal if $S(\mathbf{v}) = T(\mathbf{v})$ for every \mathbf{v} in V. A function $T: V \to W$ is called a *linear* transformation if $T(\mathbf{v} + \mathbf{v}_1) = T(\mathbf{v}) + T(\mathbf{v}_1)$ for all \mathbf{v}, \mathbf{v}_1 in V and $T(r\mathbf{v}) = rT(\mathbf{v})$ for all \mathbf{v} in V and all scalars r. $T(\mathbf{v})$ is called the *image* of \mathbf{v} under T. We have already studied linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ and shown (in Section 2.6) that they are all given by multiplication by a uniquely determined $m \times n$ matrix A; that is $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n . In the case of linear operators $\mathbb{R}^2 \to \mathbb{R}^2$, this yields an important way to describe geometric functions such as rotations about the origin and reflections in a line through the origin.

In the present chapter we will describe linear transformations in general, introduce the *kernel* and *image* of a linear transformation, and prove a useful result (called the *dimension theorem*) that relates the dimensions of the kernel and image, and unifies and extends several earlier results. Finally we study the notion of *isomorphic* vector spaces, that is, spaces that are identical except for notation, and relate this to composition of transformations that was introduced in Section 2.3.

7.1 Examples and Elementary Properties

Definition 7.1 Linear Transformations of Vector Spaces								
		If V an a linea	ad W are two vector spaces, a ar transformation if it satis	vector spaces, a function $T: V \to W$ is called nation if it satisfies the following axioms.				
v	$T(\mathbf{v})$	Τ1. Τ2.	$T(\mathbf{v} + \mathbf{v}_1) = T(\mathbf{v}) + T(\mathbf{v}_1)$ $T(\mathbf{r}\mathbf{v}) = rT(\mathbf{v})$	for all \mathbf{v} and \mathbf{v}_1 in V . for all \mathbf{v} in V and r in \mathbb{R} .				
A linear transformation $T: V \to V$ is called a linear operator on V. The situation can be visualized as in the diagram.								

Axiom T1 is just the requirement that T preserves vector addition. It asserts that the result $T(\mathbf{v} + \mathbf{v}_1)$ of adding \mathbf{v} and \mathbf{v}_1 first and then applying T is the same as applying T first to get $T(\mathbf{v})$ and $T(\mathbf{v}_1)$ and then adding. Similarly, axiom T2 means that T preserves scalar multiplication. Note that, even though the additions in axiom T1 are both denoted by the same symbol +, the addition on the left forming $\mathbf{v} + \mathbf{v}_1$ is carried out in V, whereas the addition $T(\mathbf{v}) + T(\mathbf{v}_1)$ is done in W. Similarly, the scalar multiplications $r\mathbf{v}$ and $rT(\mathbf{v})$ in axiom T2 refer to the spaces V and W, respectively.

We have already seen many examples of linear transformations $T : \mathbb{R}^n \to \mathbb{R}^m$. In fact, writing vectors in \mathbb{R}^n as columns, Theorem 2.6.2 shows that, for each such T, there is an $m \times n$ matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for every \mathbf{x} in \mathbb{R}^n . Moreover, the matrix A is given by $A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix}$ where $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ is the standard basis of \mathbb{R}^n . We denote this transformation by $T_A : \mathbb{R}^n \to \mathbb{R}^m$, defined by

 $T_A(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n

Example 7.1.1 lists three important linear transformations that will be referred to later. The verification of axioms T1 and T2 is left to the reader.

Example 7.1.1

If V and W are vector spaces, the following are linear transformations:

Identity operator $V \to V$ $1_V : V \to V$ where $1_V(\mathbf{v}) = \mathbf{v}$ for all \mathbf{v} in VZero transformation $V \to W$ $0 : V \to W$ where $0(\mathbf{v}) = \mathbf{0}$ for all \mathbf{v} in VScalar operator $V \to V$ $a : V \to V$ where $a(\mathbf{v}) = a\mathbf{v}$ for all \mathbf{v} in V(Here a is any real number.)

The symbol 0 will be used to denote the zero transformation from V to W for any spaces V and W. It was also used earlier to denote the zero function $[a, b] \to \mathbb{R}$.

The next example gives two important transformations of matrices. Recall that the trace $\operatorname{tr} A$ of an $n \times n$ matrix A is the sum of the entries on the main diagonal.

Example 7.1.2

Show that the transposition and trace are linear transformations. More precisely,

$$\begin{array}{ll} R: \mathbf{M}_{mn} \to \mathbf{M}_{nm} & \text{where } R(A) = A^T \text{ for all } A \text{ in } \mathbf{M}_{mn} \\ S: \mathbf{M}_{mn} \to \mathbb{R} & \text{where } S(A) = \operatorname{tr} A \text{ for all } A \text{ in } \mathbf{M}_{nn} \end{array}$$

are both linear transformations.

<u>Solution</u>. Axioms T1 and T2 for transposition are $(A+B)^T = A^T + B^T$ and $(rA)^T = r(A^T)$, respectively (using Theorem 2.1.2). The verifications for the trace are left to the reader.

Example 7.1.3

If a is a scalar, define $E_a : \mathbf{P}_n \to \mathbb{R}$ by $E_a(p) = p(a)$ for each polynomial p in \mathbf{P}_n . Show that E_a is a linear transformation (called **evaluation** at a).

<u>Solution</u>. If p and q are polynomials and r is in \mathbb{R} , we use the fact that the sum p+q and scalar product rp are defined as for functions:

$$(p+q)(x) = p(x) + q(x)$$
 and $(rp)(x) = rp(x)$

for all x. Hence, for all p and q in \mathbf{P}_n and all r in \mathbb{R} :

$$E_a(p+q) = (p+q)(a) = p(a) + q(a) = E_a(p) + E_a(q), \quad \text{and} \\ E_a(rp) = (rp)(a) = rp(a) = rE_a(p).$$

Hence E_a is a linear transformation.

The next example involves some calculus.

Example 7.1.4

Show that the differentiation and integration operations on \mathbf{P}_n are linear transformations. More precisely,

$$D: \mathbf{P}_n \to \mathbf{P}_{n-1} \quad \text{where } D[p(x)] = p'(x) \text{ for all } p(x) \text{ in } \mathbf{P}_n$$
$$I: \mathbf{P}_n \to \mathbf{P}_{n+1} \quad \text{where } I[p(x)] = \int_0^x p(t) dt \text{ for all } p(x) \text{ in } \mathbf{P}_n$$

are linear transformations.

Solution. These restate the following fundamental properties of differentiation and integration.

$$[p(x) + q(x)]' = p'(x) + q'(x) \text{ and } [rp(x)]' = (rp)'(x)$$
$$\int_0^x [p(t) + q(t)] dt = \int_0^x p(t) dt + \int_0^x q(t) dt \text{ and } \int_0^x rp(t) dt = r \int_0^x p(t) dt$$

The next theorem collects three useful properties of *all* linear transformations. They can be described by saying that, in addition to preserving addition and scalar multiplication (these are the axioms), linear transformations preserve the zero vector, negatives, and linear combinations.

Theorem 7.1.1

Let $T: V \to W$ be a linear transformation. 1. $T(\mathbf{0}) = \mathbf{0}$. 2. $T(-\mathbf{v}) = -T(\mathbf{v})$ for all \mathbf{v} in V. 3. $T(r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_k\mathbf{v}_k) = r_1T(\mathbf{v}_1) + r_2T(\mathbf{v}_2) + \dots + r_kT(\mathbf{v}_k)$ for all \mathbf{v}_i in V and all r_i in \mathbb{R} .

Proof.

- 1. $T(\mathbf{0}) = T(\mathbf{0}\mathbf{v}) = \mathbf{0}T(\mathbf{v}) = \mathbf{0}$ for any \mathbf{v} in V.
- 2. $T(-\mathbf{v}) = T[(-1)\mathbf{v}] = (-1)T(\mathbf{v}) = -T(\mathbf{v})$ for any \mathbf{v} in V.
- 3. The proof of Theorem 2.6.1 goes through.

The ability to use the last part of Theorem 7.1.1 effectively is vital to obtaining the benefits of linear transformations. Example 7.1.5 and Theorem 7.1.2 provide illustrations.

Example 7.1.5

Let $T: V \to W$ be a linear transformation. If $T(\mathbf{v} - 3\mathbf{v}_1) = \mathbf{w}$ and $T(2\mathbf{v} - \mathbf{v}_1) = \mathbf{w}_1$, find $T(\mathbf{v})$ and $T(\mathbf{v}_1)$ in terms of \mathbf{w} and \mathbf{w}_1 .

Solution. The given relations imply that

$$T(\mathbf{v}) - 3T(\mathbf{v}_1) = \mathbf{w}$$
$$2T(\mathbf{v}) - T(\mathbf{v}_1) = \mathbf{w}_1$$

by Theorem 7.1.1. Subtracting twice the first from the second gives $T(\mathbf{v}_1) = \frac{1}{5}(\mathbf{w}_1 - 2\mathbf{w})$. Then substitution gives $T(\mathbf{v}) = \frac{1}{5}(3\mathbf{w}_1 - \mathbf{w})$.

The full effect of property (3) in Theorem 7.1.1 is this: If $T: V \to W$ is a linear transformation and $T(\mathbf{v}_1)$, $T(\mathbf{v}_2)$, ..., $T(\mathbf{v}_n)$ are known, then $T(\mathbf{v})$ can be computed for *every* vector \mathbf{v} in span { $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ }. In particular, if { $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ } spans V, then $T(\mathbf{v})$ is determined for all \mathbf{v} in V by the choice of $T(\mathbf{v}_1)$, $T(\mathbf{v}_2)$, ..., $T(\mathbf{v}_n)$. The next theorem states this somewhat differently. As for functions in general, two linear transformations $T: V \to W$ and $S: V \to W$ are called **equal** (written T = S) if they have the same **action**; that is, if $T(\mathbf{v}) = S(\mathbf{v})$ for all \mathbf{v} in V. Theorem 7.1.2

Let $T: V \to W$ and $S: V \to W$ be two linear transformations. Suppose that $V = \text{span} \{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \}$. If $T(\mathbf{v}_i) = S(\mathbf{v}_i)$ for each *i*, then T = S.

<u>**Proof.**</u> If **v** is any vector in $V = \text{span} \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$, write $\mathbf{v} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n$ where each a_i is in \mathbb{R} . Since $T(\mathbf{v}_i) = S(\mathbf{v}_i)$ for each *i*, Theorem 7.1.1 gives

$$T(\mathbf{v}) = T(a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n)$$

= $a_1T(\mathbf{v}_1) + a_2T(\mathbf{v}_2) + \dots + a_nT(\mathbf{v}_n)$
= $a_1S(\mathbf{v}_1) + a_2S(\mathbf{v}_2) + \dots + a_nS(\mathbf{v}_n)$
= $S(a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n)$
= $S(\mathbf{v})$

Since **v** was arbitrary in V, this shows that T = S.

Example 7.1.6

Let $V = \text{span} \{ \mathbf{v}_1, \ldots, \mathbf{v}_n \}$. Let $T: V \to W$ be a linear transformation. If $T(\mathbf{v}_1) = \cdots = T(\mathbf{v}_n) = \mathbf{0}$, show that $T = \mathbf{0}$, the zero transformation from V to W.

Solution. The zero transformation $0: V \to W$ is defined by $0(\mathbf{v}) = \mathbf{0}$ for all \mathbf{v} in V (Example 7.1.1), so $T(\mathbf{v}_i) = \mathbf{0}(\mathbf{v}_i)$ holds for each *i*. Hence $T = \mathbf{0}$ by Theorem 7.1.2.

Theorem 7.1.2 can be expressed as follows: If we know what a linear transformation $T: V \to W$ does to each vector in a spanning set for V, then we know what T does to *every* vector in V. If the spanning set is a basis, we can say much more.

Theorem 7.1.3

Let V and W be vector spaces and let $\{\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n\}$ be a basis of V. Given any vectors $\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n$ in W (they need not be distinct), there exists a unique linear transformation $T: V \to W$ satisfying $T(\mathbf{b}_i) = \mathbf{w}_i$ for each i = 1, 2, ..., n. In fact, the action of T is as follows: Given $\mathbf{v} = v_1 \mathbf{b}_1 + v_2 \mathbf{b}_2 + \cdots + v_n \mathbf{b}_n$ in V, v_i in \mathbb{R} , then $T(\mathbf{v}) = T(v_1 \mathbf{b}_1 + v_2 \mathbf{b}_2 + \cdots + v_n \mathbf{b}_n) = v_1 \mathbf{w}_1 + v_2 \mathbf{w}_2 + \cdots + v_n \mathbf{w}_n$.

Proof. If a transformation T does exist with $T(\mathbf{b}_i) = \mathbf{w}_i$ for each i, and if S is any other such transformation, then $T(\mathbf{b}_i) = \mathbf{w}_i = S(\mathbf{b}_i)$ holds for each i, so S = T by Theorem 7.1.2. Hence T is unique if it exists, and it remains to show that there really is such a linear transformation. Given \mathbf{v} in V, we must specify $T(\mathbf{v})$ in W. Because $\{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ is a basis of V, we have $\mathbf{v} = v_1\mathbf{b}_1 + \cdots + v_n\mathbf{b}_n$, where v_1, \ldots, v_n are uniquely determined by \mathbf{v} (this is Theorem 6.3.1). Hence we may define $T: V \to W$ by

$$T(\mathbf{v}) = T(v_1\mathbf{b}_1 + v_2\mathbf{b}_2 + \dots + v_n\mathbf{b}_n) = v_1\mathbf{w}_1 + v_2\mathbf{w}_2 + \dots + v_n\mathbf{w}_n$$

for all $\mathbf{v} = v_1 \mathbf{b}_1 + \cdots + v_n \mathbf{b}_n$ in V. This satisfies $T(\mathbf{b}_i) = \mathbf{w}_i$ for each *i*; the verification that T is linear is left to the reader.

This theorem shows that linear transformations can be defined almost at will: Simply specify where the basis vectors go, and the rest of the action is dictated by the linearity. Moreover, Theorem 7.1.2 shows that deciding whether two linear transformations are equal comes down to determining whether they have the same effect on the basis vectors. So, given a basis $\{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ of a vector space V, there is a different linear transformation $V \to W$ for every ordered selection $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n$ of vectors in W (not necessarily distinct).

Example 7.1.7

Find a linear transformation $T: \mathbf{P}_2 \to \mathbf{M}_{22}$ such that

$$T(1+x) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad T(x+x^2) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \text{ and } T(1+x^2) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Solution. The set $\{1+x, x+x^2, 1+x^2\}$ is a basis of \mathbf{P}_2 , so every vector $p = a+bx+cx^2$ in \mathbf{P}_2 is a linear combination of these vectors. In fact

$$p(x) = \frac{1}{2}(a+b-c)(1+x) + \frac{1}{2}(-a+b+c)(x+x^2) + \frac{1}{2}(a-b+c)(1+x^2)$$

Hence Theorem 7.1.3 gives

$$\begin{split} T\left[p(x)\right] &= \frac{1}{2}(a+b-c) \begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix} + \frac{1}{2}(-a+b+c) \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} + \frac{1}{2}(a-b+c) \begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} a+b-c & -a+b+c\\ -a+b+c & a-b+c \end{bmatrix} \end{split}$$

Exercises for 7.1

Exercise 7.1.1 Show that each of the following functions is a linear transformation.

- a. $T: \mathbb{R}^2 \to \mathbb{R}^2$; T(x, y) = (x, -y) (reflection in the x axis)
- b. $T: \mathbb{R}^3 \to \mathbb{R}^3$; T(x, y, z) = (x, y, -z) (reflection in the x-y plane)
- c. $T : \mathbb{C} \to \mathbb{C}; T(z) = \overline{z}$ (conjugation)
- d. $T: \mathbf{M}_{mn} \to \mathbf{M}_{kl}; T(A) = PAQ, P \text{ a } k \times m \text{ matrix}, Q \text{ an } n \times l \text{ matrix}, \text{ both fixed}$

- e. $T: \mathbf{M}_{nn} \to \mathbf{M}_{nn}; T(A) = A^T + A$
- f. $T : \mathbf{P}_n \to \mathbb{R}; T[p(x)] = p(0)$
- g. $T: \mathbf{P}_n \to \mathbb{R}; T(r_0 + r_1 x + \dots + r_n x^n) = r_n$
- h. $T: \mathbb{R}^n \to \mathbb{R}; T(\mathbf{x}) = \mathbf{x} \cdot \mathbf{z}, \mathbf{z}$ a fixed vector in \mathbb{R}^n
- i. $T: \mathbf{P}_n \to \mathbf{P}_n; T[p(x)] = p(x+1)$
- j. $T : \mathbb{R}^n \to V; T(r_1, \dots, r_n) = r_1 \mathbf{e}_1 + \dots + r_n \mathbf{e}_n$ where $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is a fixed basis of V
- k. $T: V \to \mathbb{R}; T(r_1\mathbf{e}_1 + \dots + r_n\mathbf{e}_n) = r_1$, where $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is a fixed basis of V

b.
$$T(\mathbf{v}) = \mathbf{v}A$$
 where $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$

- d. T(A+B) = P(A+B)Q = PAQ + PBQ = T(A) +T(B); T(rA) = P(rA)O = rPAO = rT(A)
- f. T[(p+q)(x)] = (p+q)(0) = p(0) + q(0) =T[p(x)] + T[q(x)];T[(rp)(x)] = (rp)(0) = r(p(0)) = rT[p(x)]
- h. $T(X+Y) = (X+Y) \cdot Z = X \cdot Z + Y \cdot Z = T(X) +$ T(Y), and $T(rX) = (rX) \cdot Z = r(X \cdot Z) = rT(X)$
- j. If $\mathbf{v} = (v_1, \ldots, v_n)$ and $\mathbf{w} = (w_1, \ldots, w_n)$, then $T(\mathbf{v} + \mathbf{w}) = (v_1 + w_1)\mathbf{e}_1 + \dots + (v_n + w_n)\mathbf{e}_1$ $w_n)\mathbf{e}_n = (v_1\mathbf{e}_1 + \cdots + v_n\mathbf{e}_n) + (w_1\mathbf{e}_1 + \cdots + w_n\mathbf{e}_n) + (w_1\mathbf{e}_1 + \cdots + w_n\mathbf$ $w_n \mathbf{e}_n) = T(\mathbf{v}) + T(\mathbf{w})$ $T(a\mathbf{v}) = (av_1)\mathbf{e} + \dots + (av_n)\mathbf{e}_n = a(v\mathbf{e} + \dots + av_n)\mathbf{e}_n$ $v_n \mathbf{e}_n = aT(\mathbf{v})$

Exercise 7.1.2 In each case, show that T is not a linear transformation.

- a. $T: \mathbf{M}_{nn} \to \mathbb{R}; T(A) = \det A$
- b. $T: \mathbf{M}_{nm} \to \mathbb{R}; T(A) = \operatorname{rank} A$
- c. $T : \mathbb{R} \to \mathbb{R}; T(x) = x^2$
- d. $T: V \to V; T(\mathbf{v}) = \mathbf{v} + \mathbf{u}$ where $\mathbf{u} \neq \mathbf{0}$ is a fixed vector in V (T is called the **translation** by \mathbf{u})
- b. rank $(A + B) \neq \operatorname{rank} A + \operatorname{rank} B$ in general. For example, $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
- d. $T(\mathbf{0}) = \mathbf{0} + \mathbf{u} = \mathbf{u} \neq \mathbf{0}$, so T is not linear by Theorem 7.1.1.

Exercise 7.1.3 In each case, assume that T is a linear transformation.

- a. If $T: V \to \mathbb{R}$ and $T(\mathbf{v}_1) = 1$, $T(\mathbf{v}_2) = -1$, find $T(3\mathbf{v}_1 - 5\mathbf{v}_2).$
- $T(3\mathbf{v}_1 + 2\mathbf{v}_2).$

c. If
$$T : \mathbb{R}^2 \to \mathbb{R}^2$$
 and $T \begin{bmatrix} 1\\3 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix}$,
 $T \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix}$, find $T \begin{bmatrix} -1\\3 \end{bmatrix}$.
d. If $T : \mathbb{R}^2 \to \mathbb{R}^2$ and $T \begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix}$,
 $T \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 1\\0 \end{bmatrix}$, find $T \begin{bmatrix} 1\\-7 \end{bmatrix}$.
e. If $T : \mathbf{P}_2 \to \mathbf{P}_2$ and $T(x+1) = x$, $T(x-1) = 1$,
 $T(x^2) = 0$, find $T(2+3x-x^2)$.

f. If $T : \mathbf{P}_2 \to \mathbb{R}$ and T(x+2) = 1, T(1) = 5, $T(x^2 + x) = 0$, find $T(2 - x + 3x^2)$.

b. $T(3\mathbf{v}_1 + 2\mathbf{v}_2) = 0$ d. $T\begin{bmatrix} 1\\ -7 \end{bmatrix} = \begin{bmatrix} -3\\ 4 \end{bmatrix}$ f. $T(2-x+3x^2) = 46$

Exercise 7.1.4 In each case, find a linear transformation with the given properties and compute $T(\mathbf{v})$.

a. $T : \mathbb{R}^2 \to \mathbb{R}^3$; T(1, 2) = (1, 0, 1), $T(-1, 0) = (0, 1, 1); \mathbf{v} = (2, 1)$

b.
$$T : \mathbb{R}^2 \to \mathbb{R}^3$$
; $T(2, -1) = (1, -1, 1)$,
 $T(1, 1) = (0, 1, 0)$; $\mathbf{v} = (-1, 2)$

c.
$$T: \mathbf{P}_2 \to \mathbf{P}_3; T(x^2) = x^3, T(x+1) = 0,$$

 $T(x-1) = x; \mathbf{v} = x^2 + x + 1$

d.
$$T: \mathbf{M}_{22} \to \mathbb{R}; T\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix} = 3, T\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} = -1,$$

 $T\begin{bmatrix} 1 & 0\\ 1 & 0 \end{bmatrix} = 0 = T\begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix}; \mathbf{v} = \begin{bmatrix} a & b\\ c & d \end{bmatrix}$

b.
$$T(x, y) = \frac{1}{3}(x - y, 3y, x - y); T(-1, 2) =$$

(-1, 2, -1)
d. $T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = 3a - 3c + 2b$

b. If $T: V \to \mathbb{R}$ and $T(\mathbf{v}_1) = 2$, $T(\mathbf{v}_2) = -3$, find **Exercise 7.1.5** If $T: V \to V$ is a linear transformation, find $T(\mathbf{v})$ and $T(\mathbf{w})$ if:

a. $T(\mathbf{v} + \mathbf{w}) = \mathbf{v} - 2\mathbf{w}$ and $T(2\mathbf{v} - \mathbf{w}) = 2\mathbf{v}$ b. $T(\mathbf{v} + 2\mathbf{w}) = 3\mathbf{v} - \mathbf{w}$ and $T(\mathbf{v} - \mathbf{w}) = 2\mathbf{v} - 4\mathbf{w}$

b.
$$T(\mathbf{v}) = \frac{1}{3}(7\mathbf{v} - 9\mathbf{w}), \ T(\mathbf{w}) = \frac{1}{3}(\mathbf{v} + 3\mathbf{w})$$

Exercise 7.1.6 If $T: V \to W$ is a linear transformation, show that $T(\mathbf{v} - \mathbf{v}_1) = T(\mathbf{v}) - T(\mathbf{v}_1)$ for all \mathbf{v} and \mathbf{v}_1 in V.

Exercise 7.1.7 Let $\{\mathbf{e}_1, \mathbf{e}_2\}$ be the standard basis of \mathbb{R}^2 . Is it possible to have a linear transformation T such that $T(\mathbf{e}_1)$ lies in \mathbb{R} while $T(\mathbf{e}_2)$ lies in \mathbb{R}^2 ? Explain your answer.

Exercise 7.1.8 Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a basis of V and let $T: V \to V$ be a linear transformation.

- a. If $T(\mathbf{v}_i) = \mathbf{v}_i$ for each *i*, show that $T = 1_V$.
- b. If $T(\mathbf{v}_i) = -\mathbf{v}_i$ for each *i*, show that T = -1 is the scalar operator (see Example 7.1.1).
- b. $T(\mathbf{v}) = (-1)\mathbf{v}$ for all \mathbf{v} in V, so T is the scalar operator -1.

Exercise 7.1.9 If A is an $m \times n$ matrix, let $C_k(A)$ denote column k of A. Show that $C_k : \mathbf{M}_{mn} \to \mathbb{R}^m$ is a linear transformation for each k = 1, ..., n.

Exercise 7.1.10 Let $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ be a basis of \mathbb{R}^n . Given $k, 1 \le k \le n$, define $P_k : \mathbb{R}^n \to \mathbb{R}^n$ by

 $P_k(r_1\mathbf{e}_1 + \dots + r_n\mathbf{e}_n) = r_k\mathbf{e}_k$. Show that P_k a linear transformation for each k.

Exercise 7.1.11 Let $S: V \to W$ and $T: V \to W$ be linear transformations. Given *a* in \mathbb{R} , define functions

 $(S+T): V \to W$ and $(aT): V \to W$ by $(S+T)(\mathbf{v}) = S(\mathbf{v}) + T(\mathbf{v})$ and $(aT)(\mathbf{v}) = aT(\mathbf{v})$ for all \mathbf{v} in V. Show that S+T and aT are linear transformations.

Exercise 7.1.12 Describe all linear transformations

 $T: \mathbb{R} \to V.$

If $T(1) = \mathbf{v}$, then $T(r) = T(r \cdot 1) = rT(1) = r\mathbf{v}$ for all r in \mathbb{R} .

Exercise 7.1.13 Let *V* and *W* be vector spaces, let *V* be finite dimensional, and let $\mathbf{v} \neq \mathbf{0}$ in *V*. Given any \mathbf{w} in *W*, show that there exists a linear transformation $T: V \to W$ with $T(\mathbf{v}) = \mathbf{w}$. [*Hint*: Theorem 6.4.1 and Theorem 7.1.3.]

Exercise 7.1.14 Given \mathbf{y} in \mathbb{R}^n , define $S_{\mathbf{y}} : \mathbb{R}^n \to \mathbb{R}$ by $S_{\mathbf{y}}(\mathbf{x}) = \mathbf{x} \cdot \mathbf{y}$ for all \mathbf{x} in \mathbb{R}^n (where \cdot is the dot product introduced in Section 5.3).

- a. Show that $S_{\mathbf{y}}: \mathbb{R}^n \to \mathbb{R}$ is a linear transformation for any \mathbf{y} in \mathbb{R}^n .
- b. Show that every linear transformation T: $\mathbb{R}^n \to \mathbb{R}$ arises in this way; that is, $T = S_{\mathbf{y}}$ for some \mathbf{y} in \mathbb{R}^n . [*Hint*: If $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ is the standard basis of \mathbb{R}^n , write $S_{\mathbf{y}}(\mathbf{e}_i) = y_i$ for each *i*. Use Theorem 7.1.1.]

Exercise 7.1.15 Let $T: V \to W$ be a linear transformation.

- a. If U is a subspace of V, show that $T(U) = \{T(\mathbf{u}) \mid \mathbf{u} \text{ in } U\}$ is a subspace of W (called the **image** of U under T).
- b. If *P* is a subspace of *W*, show that $\{\mathbf{v} \text{ in } V \mid T(\mathbf{v}) \text{ in } P\}$ is a subspace of *V* (called the **preimage** of *P* under *T*).
- b. **0** is in $U = \{\mathbf{v} \in V \mid T(\mathbf{v}) \in P\}$ because $T(\mathbf{0}) = \mathbf{0}$ is in *P*. If **v** and **w** are in *U*, then $T(\mathbf{v})$ and $T(\mathbf{w})$ are in *P*. Hence $T(\mathbf{v} + \mathbf{w}) = T(\mathbf{v}) + T(\mathbf{w})$ is in *P* and $T(r\mathbf{v}) = rT(\mathbf{v})$ is in *P*, so $\mathbf{v} + \mathbf{w}$ and $r\mathbf{v}$ are in *U*.

Exercise 7.1.16 Show that differentiation is the only linear transformation $\mathbf{P}_n \to \mathbf{P}_n$ that satisfies $T(x^k) = kx^{k-1}$ for each k = 0, 1, 2, ..., n.

Exercise 7.1.17 Let $T: V \to W$ be a linear transformation and let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ denote vectors in V.

- a. If $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)\}$ is linearly independent, show that $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is also independent.
- b. Find $T : \mathbb{R}^2 \to \mathbb{R}^2$ for which the converse of part (a) is false.

Exercise 7.1.18 Suppose $T: V \to V$ is a linear operator with the property that $T[T(\mathbf{v})] = \mathbf{v}$ for all \mathbf{v} in V. (For example, transposition in \mathbf{M}_{nn} or conjugation in \mathbb{C} .) If $\mathbf{v} \neq \mathbf{0}$ in V, show that $\{\mathbf{v}, T(\mathbf{v})\}$ is linearly independent if and only if $T(\mathbf{v}) \neq \mathbf{v}$ and $T(\mathbf{v}) \neq -\mathbf{v}$.

Suppose $r\mathbf{v} + sT(\mathbf{v}) = \mathbf{0}$. If s = 0, then r = 0 (because $\mathbf{v} \neq \mathbf{0}$). If $s \neq 0$, then $T(\mathbf{v}) = a\mathbf{v}$ where $a = -s^{-1}r$. Thus $\mathbf{v} = T^2(\mathbf{v}) = T(a\mathbf{v}) = a^2\mathbf{v}$, so $a^2 = 1$, again because $\mathbf{v} \neq \mathbf{0}$. Hence $a = \pm 1$. Conversely, if $T(\mathbf{v}) = \pm \mathbf{v}$, then $\{\mathbf{v}, T(\mathbf{v})\}$ is certainly not independent.

Exercise 7.1.19 If *a* and *b* are real numbers, define $T_{a, b} : \mathbb{C} \to \mathbb{C}$ by $T_{a, b}(r+si) = ra+sbi$ for all r+si in \mathbb{C} .

- a. Show that $T_{a, b}$ is linear and $T_{a, b}(\overline{z}) = \overline{T_{a, b}(z)}$ for all z in \mathbb{C} . (Here \overline{z} denotes the conjugate of z.)
- b. If $T : \mathbb{C} \to \mathbb{C}$ is linear and $T(\overline{z}) = \overline{T(z)}$ for all z in \mathbb{C} , show that $T = T_{a, b}$ for some real a and b.

Exercise 7.1.20 Show that the following conditions are equivalent for a linear transformation $T: \mathbf{M}_{22} \to \mathbf{M}_{22}$.

1. tr
$$[T(A)] =$$
tr A for all A in \mathbf{M}_{22} .

2.
$$T\begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} = r_{11}B_{11} + r_{12}B_{12} + r_{21}B_{21} + r_{22}B_{22}$$
 for matrices B_{ij} such that
tr $B_{11} = 1 = \text{tr } B_{22}$ and tr $B_{12} = 0 = \text{tr } B_{21}$.

Exercise 7.1.21 Given *a* in \mathbb{R} , consider the **evaluation** map $E_a : \mathbf{P}_n \to \mathbb{R}$ defined in Example 7.1.3.

- a. Show that E_a is a linear transformation satisfying the additional condition that $E_a(x^k) = [E_a(x)]^k$ holds for all $k = 0, 1, 2, \ldots$ [Note: $x^0 = 1$.]
- b. If $T : \mathbf{P}_n \to \mathbb{R}$ is a linear transformation satisfying $T(x^k) = [T(x)]^k$ for all k = 0, 1, 2, ..., show that $T = E_a$ for some a in R.
- b. Given such a *T*, write T(x) = a. If $p = p(x) = \sum_{i=0}^{n} a_i x^i$, then $T(p) = \sum a_i T(x^i) = \sum a_i [T(x)]^i = \sum a_i a^i = p(a) = E_a(p)$. Hence $T = E_a$.

Exercise 7.1.22 If $T: \mathbf{M}_{nn} \to \mathbb{R}$ is any linear transformation satisfying T(AB) = T(BA) for all A and B in \mathbf{M}_{nn} , show that there exists a number k such that $T(A) = k \operatorname{tr} A$ for all A. (See Lemma 5.5.1.) [*Hint*: Let E_{ij} denote the $n \times n$ matrix with 1 in the (i, j) position and zeros elsewhere. Show that $E_{ik}E_{lj} = \begin{cases} 0 & \text{if } k \neq l \\ E_{ij} & \text{if } k = l \end{cases}$. Use this to show that $T(E_{11}) = T(E_{22}) = \cdots = T(E_{nn})$. Put $k = T(E_{11})$ and use the fact that $\{E_{ij} \mid 1 \leq i, j \leq n\}$ is a basis of \mathbf{M}_{nn} .]

Exercise 7.1.23 Let $T : \mathbb{C} \to \mathbb{C}$ be a linear transformation of the real vector space \mathbb{C} and assume that T(a) = a for every real number a. Show that the following are equivalent:

- a. T(zw) = T(z)T(w) for all z and w in \mathbb{C} .
- b. Either $T = 1_{\mathbb{C}}$ or $T(z) = \overline{z}$ for each z in \mathbb{C} (where \overline{z} denotes the conjugate).

7.2 Kernel and Image of a Linear Transformation

This section is devoted to two important subspaces associated with a linear transformation $T: V \to W$.

Definition 7.2 Kernel and Image of a Linear Transformation

The **kernel** of T (denoted ker T) and the **image** of T (denoted im T or T(V)) are defined by

ker $T = \{ \mathbf{v} \text{ in } V \mid T(\mathbf{v}) = \mathbf{0} \}$ im $T = \{ T(\mathbf{v}) \mid \mathbf{v} \text{ in } V \} = T(V)$

The kernel of T is often called the **nullspace** of T because it consists of all vectors \mathbf{v} in V satisfying the *condition* that $T(\mathbf{v}) = \mathbf{0}$. The image of T is often called the **range** of T and consists of all vectors \mathbf{w} in Wof the *form* $\mathbf{w} = T(\mathbf{v})$ for some \mathbf{v} in V. These subspaces are depicted in the diagrams.

Example 7.2.1

Let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation induced by the $m \times n$ matrix A, that is $T_A(\mathbf{x}) = A\mathbf{x}$ for all columns \mathbf{x} in \mathbb{R}^n . Then

> ker $T_A = {\mathbf{x} | A\mathbf{x} = \mathbf{0}} = \text{null } A$ and im $T_A = {A\mathbf{x} | \mathbf{x} \text{ in } \mathbb{R}^n} = \text{im } A$

Hence the following theorem extends Example 5.1.2.

Theorem 7.2.1

Let $T:V\to W$ be a linear transformation.

- 1. ker T is a subspace of V.
- 2. im T is a subspace of W.

<u>**Proof.**</u> The fact that T(0) = 0 shows that ker T and im T contain the zero vector of V and W respectively.

1. If **v** and **v**₁ lie in ker *T*, then $T(\mathbf{v}) = \mathbf{0} = T(\mathbf{v}_1)$, so

$$T(\mathbf{v} + \mathbf{v}_1) = T(\mathbf{v}) + T(\mathbf{v}_1) = \mathbf{0} + \mathbf{0} = \mathbf{0}$$
$$T(r\mathbf{v}) = rT(\mathbf{v}) = r\mathbf{0} = \mathbf{0} \text{ for all } r \text{ in } \mathbb{R}$$

Hence $\mathbf{v} + \mathbf{v}_1$ and $r\mathbf{v}$ lie in ker T (they satisfy the required condition), so ker T is a subspace of V by the subspace test (Theorem 6.2.1).

2. If w and w₁ lie in im T, write $\mathbf{w} = T(\mathbf{v})$ and $\mathbf{w}_1 = T(\mathbf{v}_1)$ where $\mathbf{v}, \mathbf{v}_1 \in V$. Then

$$\mathbf{w} + \mathbf{w}_1 = T(\mathbf{v}) + T(\mathbf{v}_1) = T(\mathbf{v} + \mathbf{v}_1)$$
$$r\mathbf{w} = rT(\mathbf{v}) = T(r\mathbf{v}) \quad \text{for all } r \text{ in } \mathbb{R}$$

Hence $\mathbf{w} + \mathbf{w}_1$ and $r\mathbf{w}$ both lie in $\operatorname{im} T$ (they have the required form), so $\operatorname{im} T$ is a subspace of W.

Given a linear transformation $T: V \to W$:

dim (ker T) is called the **nullity** of T and denoted as nullity(T)dim (im T) is called the **rank** of T and denoted as rank(T)

The rank of a matrix A was defined earlier to be the dimension of col A, the column space of A. The two usages of the word *rank* are consistent in the following sense. Recall the definition of T_A in Example 7.2.1.

Example 7.2.2 Given an $m \times n$ matrix A, show that im $T_A = \operatorname{col} A$, so rank $T_A = \operatorname{rank} A$. Solution. Write $A = \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_n \end{bmatrix}$ in terms of its columns. Then $\operatorname{im} T_A = \{A\mathbf{x} \mid \mathbf{x} \text{ in } \mathbb{R}^n\} = \{x_1\mathbf{c}_1 + \cdots + x_n\mathbf{c}_n \mid x_i \text{ in } \mathbb{R}\}$ using Definition 2.5. Hence im T_A is the column space of A; the rest follows.

Often, a useful way to study a subspace of a vector space is to exhibit it as the kernel or image of a linear transformation. Here is an example.

Example 7.2.3

Define a transformation $P: \mathbf{M}_{nn} \to \mathbf{M}_{nn}$ by $P(A) = A - A^T$ for all A in \mathbf{M}_{nn} . Show that P is linear and that:

- a. ker P consists of all symmetric matrices.
- b. im *P* consists of all skew-symmetric matrices.

<u>Solution</u>. The verification that P is linear is left to the reader. To prove part (a), note that a matrix A lies in ker P just when $0 = P(A) = A - A^T$, and this occurs if and only if $A = A^T$ —that is, A is symmetric. Turning to part (b), the space im P consists of all matrices P(A), A in \mathbf{M}_{nn} . Every such matrix is skew-symmetric because

$$P(A)^{T} = (A - A^{T})^{T} = A^{T} - A = -P(A)$$

On the other hand, if S is skew-symmetric (that is, $S^T = -S$), then S lies in im P. In fact,

$$P\left[\frac{1}{2}S\right] = \frac{1}{2}S - \left[\frac{1}{2}S\right]^{T} = \frac{1}{2}(S - S^{T}) = \frac{1}{2}(S + S) = S$$

One-to-One and Onto Transformations

Definition 7.3 One-to-one and Onto Linear Transformations

Let $T: V \to W$ be a linear transformation.

- 1. T is said to be **onto** if im T = W.
- 2. *T* is said to be **one-to-one** if $T(\mathbf{v}) = T(\mathbf{v}_1)$ implies $\mathbf{v} = \mathbf{v}_1$.

A vector **w** in *W* is said to be **hit** by *T* if $\mathbf{w} = T(\mathbf{v})$ for some **v** in *V*. Then *T* is onto if every vector in *W* is hit at least once, and *T* is one-to-one if no element of *W* gets hit twice. Clearly the onto transformations *T* are those for which im T = W is as large a subspace of *W* as possible. By contrast, Theorem 7.2.2 shows that the one-to-one transformations *T* are the ones with ker *T* as *small* a subspace of *V* as possible.

Theorem 7.2.2

If $T: V \to W$ is a linear transformation, then T is one-to-one if and only if ker $T = \{0\}$.

Proof. If *T* is one-to-one, let **v** be any vector in ker *T*. Then $T(\mathbf{v}) = \mathbf{0}$, so $T(\mathbf{v}) = T(\mathbf{0})$. Hence $\mathbf{v} = \mathbf{0}$ because *T* is one-to-one. Hence ker $T = \{\mathbf{0}\}$.

Conversely, assume that ker $T = \{0\}$ and let $T(\mathbf{v}) = T(\mathbf{v}_1)$ with \mathbf{v} and \mathbf{v}_1 in V. Then $T(\mathbf{v} - \mathbf{v}_1) = T(\mathbf{v}) - T(\mathbf{v}_1) = \mathbf{0}$, so $\mathbf{v} - \mathbf{v}_1$ lies in ker $T = \{\mathbf{0}\}$. This means that $\mathbf{v} - \mathbf{v}_1 = \mathbf{0}$, so $\mathbf{v} = \mathbf{v}_1$, proving that T is one-to-one.

Example 7.2.4

The identity transformation $1_V: V \to V$ is both one-to-one and onto for any vector space V.

Example 7.2.5

Consider the linear transformations

$$S: \mathbb{R}^3 \to \mathbb{R}^2 \quad \text{given by } S(x, y, z) = (x+y, x-y)$$
$$T: \mathbb{R}^2 \to \mathbb{R}^3 \quad \text{given by } T(x, y) = (x+y, x-y, x)$$

Show that T is one-to-one but not onto, whereas S is onto but not one-to-one.

<u>Solution</u>. The verification that they are linear is omitted. T is one-to-one because

ker
$$T = \{(x, y) | x + y = x - y = x = 0\} = \{(0, 0)\}$$

However, it is not onto. For example (0, 0, 1) does not lie in im *T* because if (0, 0, 1) = (x+y, x-y, x) for some *x* and *y*, then x+y=0=x-y and x=1, an impossibility. Turning to *S*, it is not one-to-one by Theorem 7.2.2 because (0, 0, 1) lies in ker *S*. But every element (s, t) in \mathbb{R}^2 lies in im *S* because (s, t) = (x+y, x-y) = S(x, y, z) for some *x*, *y*, and *z* (in fact, $x = \frac{1}{2}(s+t)$, $y = \frac{1}{2}(s-t)$, and z = 0). Hence *S* is onto.

Example 7.2.6

Let U be an invertible $m \times m$ matrix and define

 $T: \mathbf{M}_{mn} \to \mathbf{M}_{mn}$ by T(X) = UX for all X in \mathbf{M}_{mn}

Show that T is a linear transformation that is both one-to-one and onto.

Solution. The verification that T is linear is left to the reader. To see that T is one-to-one, let T(X) = 0. Then UX = 0, so left-multiplication by U^{-1} gives X = 0. Hence ker $T = \{0\}$, so T is one-to-one. Finally, if Y is any member of \mathbf{M}_{mn} , then $U^{-1}Y$ lies in \mathbf{M}_{mn} too, and $T(U^{-1}Y) = U(U^{-1}Y) = Y$. This shows that T is onto.

The linear transformations $\mathbb{R}^n \to \mathbb{R}^m$ all have the form T_A for some $m \times n$ matrix A (Theorem 2.6.2). The next theorem gives conditions under which they are onto or one-to-one. Note the connection with Theorem 5.4.3 and Theorem 5.4.4.

Theorem 7.2.3

Let A be an $m \times n$ matrix, and let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation induced by A, that is $T_A(\mathbf{x}) = A\mathbf{x}$ for all columns \mathbf{x} in \mathbb{R}^n .

- 1. T_A is onto if and only if rank A = m.
- 2. T_A is one-to-one if and only if rank A = n.

Proof.

- 1. We have that $\operatorname{im} T_A$ is the column space of A (see Example 7.2.2), so T_A is onto if and only if the column space of A is \mathbb{R}^m . Because the rank of A is the dimension of the column space, this holds if and only if rank A = m.
- 2. ker $T_A = \{\mathbf{x} \text{ in } \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}$, so (using Theorem 7.2.2) T_A is one-to-one if and only if $A\mathbf{x} = \mathbf{0}$ implies $\mathbf{x} = \mathbf{0}$. This is equivalent to rank A = n by Theorem 5.4.3.

The Dimension Theorem

Let A denote an $m \times n$ matrix of rank r and let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ denote the corresponding matrix transformation given by $T_A(\mathbf{x}) = A\mathbf{x}$ for all columns \mathbf{x} in \mathbb{R}^n . It follows from Example 7.2.1 and Example 7.2.2 that im $T_A = \operatorname{col} A$, so dim (im T_A) = dim (col A) = r. On the other hand Theorem 5.4.2 shows that dim (ker T_A) = dim (null A) = n - r. Combining these we see that

 $\dim(\operatorname{im} T_A) + \dim(\ker T_A) = n$ for every $m \times n$ matrix A

The main result of this section is a deep generalization of this observation.

Theorem 7.2.4: Dimension Theorem

Let $T: V \to W$ be any linear transformation and assume that ker T and im T are both finite dimensional. Then V is also finite dimensional and

 $\dim V = \dim (\ker T) + \dim (\operatorname{im} T)$

In other words, dim V =nullity (T) +rank (T).

Proof. Every vector in $\operatorname{im} T = T(V)$ has the form $T(\mathbf{v})$ for some \mathbf{v} in V. Hence let $\{T(\mathbf{e}_1), T(\mathbf{e}_2), \ldots, T(\mathbf{e}_r)\}$ be a basis of $\operatorname{im} T$, where the \mathbf{e}_i lie in V. Let $\{\mathbf{f}_1, \mathbf{f}_2, \ldots, \mathbf{f}_k\}$ be any basis of ker T. Then $\dim(\operatorname{im} T) = r$ and $\dim(\ker T) = k$, so it suffices to show that $B = \{\mathbf{e}_1, \ldots, \mathbf{e}_r, \mathbf{f}_1, \ldots, \mathbf{f}_k\}$ is a basis of V.

1. B spans V. If v lies in V, then T(v) lies in im V, so

$$T(\mathbf{v}) = t_1 T(\mathbf{e}_1) + t_2 T(\mathbf{e}_2) + \dots + t_r T(\mathbf{e}_r) \quad t_i \text{ in } \mathbb{R}$$

This implies that $\mathbf{v} - t_1 \mathbf{e}_1 - t_2 \mathbf{e}_2 - \cdots - t_r \mathbf{e}_r$ lies in ker *T* and so is a linear combination of $\mathbf{f}_1, \ldots, \mathbf{f}_k$. Hence \mathbf{v} is a linear combination of the vectors in *B*.

2. B is linearly independent. Suppose that t_i and s_j in \mathbb{R} satisfy

$$t_1\mathbf{e}_1 + \dots + t_r\mathbf{e}_r + s_1\mathbf{f}_1 + \dots + s_k\mathbf{f}_k = \mathbf{0}$$

$$(7.1)$$

Applying T gives $t_1T(\mathbf{e}_1) + \cdots + t_rT(\mathbf{e}_r) = \mathbf{0}$ (because $T(\mathbf{f}_i) = \mathbf{0}$ for each *i*). Hence the independence of $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_r)\}$ yields $t_1 = \cdots = t_r = \mathbf{0}$. But then (7.1) becomes

$$s_1\mathbf{f}_1+\cdots+s_k\mathbf{f}_k=\mathbf{0}$$

so $s_1 = \cdots = s_k = 0$ by the independence of $\{\mathbf{f}_1, \ldots, \mathbf{f}_k\}$. This proves that B is linearly independent.

Note that the vector space V is not assumed to be finite dimensional in Theorem 7.2.4. In fact, verifying that ker T and im T are both finite dimensional is often an important way to prove that V is finite dimensional.

Note further that r + k = n in the proof so, after relabelling, we end up with a basis

$$B = \{e_1, e_2, \dots, e_r, e_{r+1}, \dots, e_n\}$$

of V with the property that $\{\mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ is a basis of ker T and $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_r)\}$ is a basis of im T. In fact, if V is known in advance to be finite dimensional, then any basis $\{\mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ of ker T can be extended to a basis $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_r, \mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ of V by Theorem 6.4.1. Moreover, it turns out that, no matter how this is done, the vectors $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_r)\}$ will be a basis of im T. This result is useful, and we record it for reference. The proof is much like that of Theorem 7.2.4 and is left as Exercise 7.2.26.

Theorem 7.2.5

Let $T: V \to W$ be a linear transformation, and let $\{\mathbf{e}_1, \ldots, \mathbf{e}_r, \mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ be a basis of V such that $\{\mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ is a basis of ker T. Then $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_r)\}$ is a basis of im T, and hence $r = \operatorname{rank} T$.

The dimension theorem is one of the most useful results in all of linear algebra. It shows that if either $\dim(\ker T)$ or $\dim(\operatorname{im} T)$ can be found, then the other is automatically known. In many cases it is easier to compute one than the other, so the theorem is a real asset. The rest of this section is devoted to illustrations of this fact. The next example uses the dimension theorem to give a different proof of the first part of Theorem 5.4.2.

Example 7.2.7

Let A be an $m \times n$ matrix of rank r. Show that the space null A of all solutions of the system $A\mathbf{x} = \mathbf{0}$ of m homogeneous equations in n variables has dimension n - r.

<u>Solution</u>. The space in question is just ker T_A , where $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is defined by $T_A(\mathbf{x}) = A\mathbf{x}$ for all columns \mathbf{x} in \mathbb{R}^n . But dim (im T_A) = rank T_A = rank A = r by Example 7.2.2, so dim (ker T_A) = n - r by the dimension theorem.

Example 7.2.8

If $T: V \to W$ is a linear transformation where V is finite dimensional, then

 $\dim(\ker T) \leq \dim V$ and $\dim(\operatorname{im} T) \leq \dim V$

Indeed, dim $V = \dim(\ker T) + \dim(\operatorname{im} T)$ by Theorem 7.2.4. Of course, the first inequality also follows because ker T is a subspace of V.

Example 7.2.9

Let $D: \mathbf{P}_n \to \mathbf{P}_{n-1}$ be the differentiation map defined by D[p(x)] = p'(x). Compute ker D and hence conclude that D is onto.

<u>Solution</u>. Because p'(x) = 0 means p(x) is constant, we have dim (ker D) = 1. Since dim $\mathbf{P}_n = n + 1$, the dimension theorem gives

 $\dim(\operatorname{im} D) = (n+1) - \dim(\ker D) = n = \dim(\mathbf{P}_{n-1})$

This implies that $\operatorname{im} D = \mathbf{P}_{n-1}$, so D is onto.

Of course it is not difficult to verify directly that each polynomial q(x) in \mathbf{P}_{n-1} is the derivative of some polynomial in \mathbf{P}_n (simply integrate q(x)!), so the dimension theorem is not needed in this case. However, in some situations it is difficult to see directly that a linear transformation is onto, and the method used in Example 7.2.9 may be by far the easiest way to prove it. Here is another illustration.

Example 7.2.10

Given a in \mathbb{R} , the evaluation map $E_a : \mathbf{P}_n \to \mathbb{R}$ is given by $E_a[p(x)] = p(a)$. Show that E_a is linear and onto, and hence conclude that $\{(x-a), (x-a)^2, \dots, (x-a)^n\}$ is a basis of ker E_a , the subspace of all polynomials p(x) for which p(a) = 0.

<u>Solution</u>. E_a is linear by Example 7.1.3; the verification that it is onto is left to the reader. Hence dim (im E_a) = dim (\mathbb{R}) = 1, so dim (ker E_a) = (n+1) - 1 = n by the dimension theorem. Now each of the *n* polynomials $(x-a), (x-a)^2, \ldots, (x-a)^n$ clearly lies in ker E_a , and they are linearly independent (they have distinct degrees). Hence they are a basis because dim (ker E_a) = n.

We conclude by applying the dimension theorem to the rank of a matrix.

Example 7.2.11

If A is any $m \times n$ matrix, show that rank $A = \operatorname{rank} A^T A = \operatorname{rank} A A^T$.

<u>Solution</u>. It suffices to show that rank $A = \operatorname{rank} A^T A$ (the rest follows by replacing A with A^T). Write $B = A^T A$, and consider the associated matrix transformations

 $T_A: \mathbb{R}^n \to \mathbb{R}^m$ and $T_B: \mathbb{R}^n \to \mathbb{R}^n$

The dimension theorem and Example 7.2.2 give

rank A = rank T_A = dim (im T_A) = n - dim (ker T_A) rank B = rank T_B = dim (im T_B) = n - dim (ker T_B)

so it suffices to show that ker $T_A = \ker T_B$. Now $A\mathbf{x} = \mathbf{0}$ implies that $B\mathbf{x} = A^T A \mathbf{x} = \mathbf{0}$, so ker T_A is contained in ker T_B . On the other hand, if $B\mathbf{x} = \mathbf{0}$, then $A^T A \mathbf{x} = \mathbf{0}$, so

$$||A\mathbf{x}||^2 = (A\mathbf{x})^T (A\mathbf{x}) = \mathbf{x}^T A^T A \mathbf{x} = \mathbf{x}^T \mathbf{0} = 0$$

This implies that $A\mathbf{x} = \mathbf{0}$, so ker T_B is contained in ker T_A .

Exercises for 7.2

Exercise 7.2.1 For each matrix A, find a basis for the kernel and image of T_A , and find the rank and nullity of T_A .

a)
$$\begin{bmatrix} 1 & 2 & -1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & -3 & 2 & 0 \end{bmatrix}$$
 b) $\begin{bmatrix} 2 & 1 & -1 & 3 \\ 1 & 0 & 3 & 1 \\ 1 & 1 & -4 & 2 \end{bmatrix}$
c) $\begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ 4 & -1 & 5 \\ 0 & 2 & -2 \end{bmatrix}$ d) $\begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & 3 \\ 1 & 2 & -3 \\ 0 & 3 & -6 \end{bmatrix}$

$$\begin{cases} \begin{bmatrix} -3\\7\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix} \\ ; \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}; 2, 2 \\ d. \left\{ \begin{bmatrix} -1\\2\\1 \end{bmatrix} \right\}; \left\{ \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}; 2, 1 \end{cases}$$

Exercise 7.2.2 In each case, (i) find a basis of ker T, and (ii) find a basis of im T. You may assume that T is linear.

a. $T: \mathbf{P}_2 \to \mathbb{R}^2$; $T(a+bx+cx^2) = (a, b)$ b. $T: \mathbf{P}_2 \to \mathbb{R}^2$; T(p(x)) = (p(0), p(1))c. $T: \mathbb{R}^3 \to \mathbb{R}^3$; T(x, y, z) = (x+y, x+y, 0)d. $T: \mathbb{R}^3 \to \mathbb{R}^4$; T(x, y, z) = (x, x, y, y)e. $T: \mathbf{M}_{22} \to \mathbf{M}_{22}$; $T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+b & b+c \\ c+d & d+a \end{bmatrix}$ f. $T: \mathbf{M}_{22} \to \mathbb{R}$; $T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a+d$ g. $T: \mathbf{P}_n \to \mathbb{R}$; $T(r_0+r_1x+\cdots+r_nx^n) = r_n$ h. $T: \mathbb{R}^n \to \mathbb{R}$; $T(r_1, r_2, \dots, r_n) = r_1+r_2+\cdots+r_n$

i.
$$T: \mathbf{M}_{22} \to \mathbf{M}_{22}; T(X) = XA - AX$$
, where
 $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
j. $T: \mathbf{M}_{22} \to \mathbf{M}_{22}; T(X) = XA$, where $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$

b.
$$\{x^2 - x\}; \{(1, 0), (0, 1)\}$$

d. $\{(0, 0, 1)\}; \{(1, 1, 0, 0), (0, 0, 1, 1)\}$
f. $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}; \{1\}$
h. $\{(1, 0, 0, \dots, 0, -1), (0, 1, 0, \dots, 0, -1), \dots, (0, 0, 0, \dots, 1, -1)\}; \{1\}$
j. $\left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \right\};$

Exercise 7.2.3 Let $P: V \to \mathbb{R}$ and $Q: V \to \mathbb{R}$ be linear transformations, where V is a vector space. Define $T: V \to \mathbb{R}^2$ by $T(\mathbf{v}) = (P(\mathbf{v}), Q(\mathbf{v}))$.

- a. Show that T is a linear transformation.
- b. Show that ker $T = \ker P \cap \ker Q$, the set of vectors in both ker P and ker Q.
- b. $T(\mathbf{v}) = \mathbf{0} = (0, 0)$ if and only if $P(\mathbf{v}) = 0$ and $Q(\mathbf{v}) = 0$; that is, if and only if \mathbf{v} is in ker $P \cap \ker Q$.

Exercise 7.2.4 In each case, find a basis

 $B = \{\mathbf{e}_1, \ldots, \mathbf{e}_r, \mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ of V such that $\{\mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ is a basis of ker T, and verify Theorem 7.2.5.

- a. $T : \mathbb{R}^3 \to \mathbb{R}^4$; T(x, y, z) = (x y + 2z, x + y z, 2x + z, 2y 3z)
- b. $T : \mathbb{R}^3 \to \mathbb{R}^4$; T(x, y, z) = (x + y + z, 2x y + 3z, z 3y, 3x + 4z)

b. ker T = span {(-4, 1, 3)}; B = {(1, 0, 0), (0, 1, 0), (-4, 1, 3)}, im T = span {(1, 2, 0, 3), (1, -1, -3, 0)}

Exercise 7.2.5 Show that every matrix X in \mathbf{M}_{nn} has the form $X = A^T - 2A$ for some matrix A in \mathbf{M}_{nn} . [*Hint*: The dimension theorem.]

Exercise 7.2.6 In each case either prove the statement or give an example in which it is false. Throughout, let $T: V \to W$ be a linear transformation where V and W are finite dimensional.

- a. If V = W, then ker $T \subseteq \text{im } T$.
- b. If dim V = 5, dim W = 3, and dim (ker T) = 2, then T is onto.
- c. If dim V = 5 and dim W = 4, then ker $T \neq \{0\}$.
- d. If ker T = V, then $W = \{0\}$.
- e. If $W = \{0\}$, then ker T = V.
- f. If W = V, and im $T \subseteq \ker T$, then T = 0.
- g. If $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is a basis of V and $T(\mathbf{e}_1) = \mathbf{0} = T(\mathbf{e}_2)$, then $\dim(\operatorname{im} T) \leq 1$.
- h. If $\dim(\ker T) \leq \dim W$, then $\dim W \geq \frac{1}{2} \dim V$.
- i. If T is one-to-one, then dim $V \leq \dim W$.
- j. If dim $V \leq \dim W$, then T is one-to-one.
- k. If T is onto, then dim $V \ge \dim W$.
- l. If dim $V \ge \dim W$, then T is onto.
- m. If $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_k)\}$ is independent, then $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is independent.
- n. If $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ spans V, then $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_k)\}$ spans W.
- b. Yes. $\dim(\operatorname{im} T) = 5 \dim(\ker T) = 3$, so im T = W as dim W = 3.

- d. No. $T=0:\mathbb{R}^2\to\mathbb{R}^2$
- f. No. $T : \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (y, 0). Then ker $T = \operatorname{im} T$
- h. Yes. $\dim V = \dim (\ker T) + \dim (\operatorname{im} T) \le \dim W + \dim W = 2 \dim W$
- j. No. Consider $T : \mathbb{R}^2 \to \mathbb{R}^2$ with T(x, y) = (y, 0).
- l. No. Same example as (j).
- n. No. Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by T(x, y) = (x, 0). If $\mathbf{v}_1 = (1, 0)$ and $\mathbf{v}_2 = (0, 1)$, then $\mathbb{R}^2 =$ span $\{\mathbf{v}_1, \mathbf{v}_2\}$ but $\mathbb{R}^2 \neq$ span $\{T(\mathbf{v}_1), T(\mathbf{v}_2)\}$.

Exercise 7.2.7 Show that linear independence is preserved by one-to-one transformations and that spanning sets are preserved by onto transformations. More precisely, if $T: V \to W$ is a linear transformation, show that:

- a. If T is one-to-one and $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is independent in V, then $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)\}$ is independent in W.
- b. If T is onto and $V = \text{span} \{ \mathbf{v}_1, \dots, \mathbf{v}_n \}$, then $W = \text{span} \{ T(\mathbf{v}_1), \dots, T(\mathbf{v}_n) \}$.
- b. Given \mathbf{w} in W, let $\mathbf{w} = T(\mathbf{v})$, \mathbf{v} in V, and write $\mathbf{v} = r_1\mathbf{v}_1 + \dots + r_n\mathbf{v}_n$. Then $\mathbf{w} = T(\mathbf{v}) = r_1T(\mathbf{v}_1) + \dots + r_nT(\mathbf{v}_n)$.

Exercise 7.2.8 Given $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ in a vector space V, define $T : \mathbb{R}^n \to V$ by $T(r_1, \ldots, r_n) = r_1 \mathbf{v}_1 + \cdots + r_n \mathbf{v}_n$. Show that T is linear, and that:

- a. T is one-to-one if and only if $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is independent.
- b. *T* is onto if and only if $V = \text{span} \{ \mathbf{v}_1, ..., \mathbf{v}_n \}$.
- b. im $T = \{\sum_i r_i \mathbf{v}_i \mid r_i \text{ in } \mathbb{R}\} = \text{span} \{\mathbf{v}_i\}.$

Exercise 7.2.9 Let $T: V \to V$ be a linear transformation where V is finite dimensional. Show that exactly one of (i) and (ii) holds: (i) $T(\mathbf{v}) = \mathbf{0}$ for some $\mathbf{v} \neq \mathbf{0}$ in V; (ii) $T(\mathbf{x}) = \mathbf{v}$ has a solution \mathbf{x} in V for every \mathbf{v} in V.

Exercise 7.2.10 Let $T: \mathbf{M}_{nn} \to \mathbb{R}$ denote the trace map: $T(A) = \operatorname{tr} A$ for all A in \mathbf{M}_{nn} . Show that dim (ker T) = $n^2 - 1$. _______ T is linear and onto. Hence $1 = \dim \mathbb{R} = \dim (\operatorname{im} T) = \dim (\mathbf{M}_{nn}) - \dim (\ker T) = n^2 - \dim (\ker T)$.

Exercise 7.2.11 Show that the following are equivalent for a linear transformation $T: V \to W$.

1. ker
$$T = V$$

3. $T = 0$
2. im $T = \{0\}$

Exercise 7.2.12 Let *A* and *B* be $m \times n$ and $k \times n$ matrices, respectively. Assume that $A\mathbf{x} = \mathbf{0}$ implies $B\mathbf{x} = \mathbf{0}$ for every *n*-column \mathbf{x} . Show that rank $A \ge \operatorname{rank} B$.

[*Hint*: Theorem 7.2.4.] _

The condition means $\ker(T_A) \subseteq \ker(T_B)$, so dim $[\ker(T_A)] \leq \dim [\ker(T_B)]$. Then Theorem 7.2.4 gives dim $[\operatorname{im}(T_A)] \geq \dim [\operatorname{im}(T_B)]$; that is, rank $A \geq$ rank B.

Exercise 7.2.13 Let A be an $m \times n$ matrix of rank r. Thinking of \mathbb{R}^n as rows, define $V = \{\mathbf{x} \text{ in } \mathbb{R}^m \mid \mathbf{x}A = \mathbf{0}\}$. Show that dim V = m - r.

Exercise 7.2.14 Consider

$$V = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \middle| a + c = b + d \right\}$$

- a. Consider $S: \mathbf{M}_{22} \to \mathbb{R}$ with $S\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a + c b d$. Show that S is linear and onto and that V is a subspace of \mathbf{M}_{22} . Compute dim V.
- b. Consider $T: V \to \mathbb{R}$ with $T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a + c$. Show that T is linear and onto, and use this information to compute dim (ker T).

Exercise 7.2.15 Define $T : \mathbf{P}_n \to \mathbb{R}$ by T[p(x)] = the sum of all the coefficients of p(x).

a. Use the dimension theorem to show that $\dim(\ker T) = n$.

- b. Conclude that $\{x-1, x^2-1, \dots, x^n-1\}$ is a basis of ker *T*.
- b. $B = \{x-1, ..., x^n-1\}$ is independent (distinct degrees) and contained in ker *T*. Hence *B* is a basis of ker *T* by (a).

Exercise 7.2.16 Use the dimension theorem to prove Theorem 1.3.1: If *A* is an $m \times n$ matrix with m < n, the system $A\mathbf{x} = \mathbf{0}$ of *m* homogeneous equations in *n* variables always has a nontrivial solution.

Exercise 7.2.17 Let *B* be an $n \times n$ matrix, and consider the subspaces $U = \{A \mid A \text{ in } \mathbf{M}_{mn}, AB = 0\}$ and $V = \{AB \mid A \text{ in } \mathbf{M}_{mn}\}$. Show that dim $U + \dim V = mn$.

Exercise 7.2.18 Let U and V denote, respectively, the spaces of even and odd polynomials in \mathbf{P}_n . Show that dim U + dim V = n + 1. [*Hint*: Consider $T : \mathbf{P}_n \to \mathbf{P}_n$ where T[p(x)] = p(x) - p(-x).]

Exercise 7.2.19 Show that every polynomial f(x) in \mathbf{P}_{n-1} can be written as f(x) = p(x+1) - p(x) for some polynomial p(x) in \mathbf{P}_n . [*Hint*: Define $T: \mathbf{P}_n \to \mathbf{P}_{n-1}$ by T[p(x)] = p(x+1) - p(x).]

Exercise 7.2.20 Let *U* and *V* denote the spaces of symmetric and skew-symmetric $n \times n$ matrices. Show that dim $U + \dim V = n^2$.

Define $T: \mathbf{M}_{nn} \to \mathbf{M}_{nn}$ by $T(A) = A - A^T$ for all A in \mathbf{M}_{nn} . Then ker T = U and im T = V by Example 7.2.3, so the dimension theorem gives $n^2 = \dim \mathbf{M}_{nn} = \dim (U) + \dim (V)$.

Exercise 7.2.21 Assume that B in \mathbf{M}_{nn} satisfies $B^k = 0$ for some $k \ge 1$. Show that every matrix in \mathbf{M}_{nn} has the form BA - A for some A in \mathbf{M}_{nn} . [*Hint*: Show that $T : \mathbf{M}_{nn} \to \mathbf{M}_{nn}$ is linear and one-to-one where

T(A) = BA - A for each A.]

Exercise 7.2.22 Fix a column $\mathbf{y} \neq \mathbf{0}$ in \mathbb{R}^n and let $U = \{A \text{ in } \mathbf{M}_{nn} \mid A\mathbf{y} = \mathbf{0}\}$. Show that dim U = n(n-1).

Define $T : \mathbf{M}_{nn} \to \mathbb{R}^n$ by $T(A) = A\mathbf{y}$ for all A in \mathbf{M}_{nn} . Then T is linear with ker T = U, so it is enough to show that T is onto (then dim $U = n^2 - \dim(\operatorname{im} T) = n^2 - n$). We have $T(0) = \mathbf{0}$. Let $\mathbf{y} = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}^T \neq \mathbf{0}$ in \mathbb{R}^n . If $y_k \neq \mathbf{0}$ let $\mathbf{c}_k = y_k^{-1}\mathbf{y}$, and let $\mathbf{c}_j = \mathbf{0}$ if $j \neq k$. If A = Exercise 7.2.29 Let U be a subspace of a finite $\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_n \end{bmatrix}$, then $T(A) = A\mathbf{y} = y_1\mathbf{c}_1 + \cdots + y_n\mathbf{c}_n$ $y_k \mathbf{c}_k + \cdots + y_n \mathbf{c}_n = \mathbf{y}$. This shows that T is onto, as required.

Exercise 7.2.23 If B in \mathbf{M}_{mn} has rank r, let $U = \{A\}$ in $\mathbf{M}_{nn} | BA = 0$ and $W = \{BA | A \text{ in } \mathbf{M}_{nn}\}$. Show that dim U = n(n-r) and dim W = nr. [*Hint*: Show that U consists of all matrices A whose columns are in the null space of B. Use Example 7.2.7.]

Exercise 7.2.24 Let $T: V \to V$ be a linear transformation where dim V = n. If ker $T \cap \text{im } T = \{0\}$, show that every vector \mathbf{v} in V can be written $\mathbf{v} = \mathbf{u} + \mathbf{w}$ for some \mathbf{u} in ker T and \mathbf{w} in im T. [*Hint*: Choose bases $B \subseteq \ker T$ and $D \subseteq \operatorname{im} T$, and use Exercise 6.3.33.]

Exercise 7.2.25 Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator of rank 1, where \mathbb{R}^n is written as rows. Show that there exist numbers a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n such that T(X) = XA for all rows X in \mathbb{R}^n , where

$$A = \begin{bmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & & \vdots \\ a_nb_1 & a_nb_2 & \cdots & a_nb_n \end{bmatrix}$$

[*Hint*: im $T = \mathbb{R}\mathbf{w}$ for $\mathbf{w} = (b_1, \ldots, b_n)$ in \mathbb{R}^n .]

Exercise 7.2.26 Prove Theorem 7.2.5.

Exercise 7.2.27 Let $T: V \to \mathbb{R}$ be a nonzero linear transformation, where $\dim V = n$. Show that there is a basis $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ of V so that $T(r_1\mathbf{e}_1 + r_2\mathbf{e}_2 +$ $\cdots + r_n \mathbf{e}_n = r_1.$

Exercise 7.2.28 Let $f \neq 0$ be a fixed polynomial of degree $m \geq 1$. If p is any polynomial, recall that $(p \circ f)(x) = p[f(x)]$. Define $T_f : P_n \to P_{n+m}$ by $T_f(p) = p \circ f.$

- a. Show that T_f is linear.
- b. Show that T_f is one-to-one.

dimensional vector space V.

- a. Show that $U = \ker T$ for some linear operator $T: V \to V.$
- b. Show that $U = \operatorname{im} S$ for some linear operator $S: V \to V$. [*Hint*: Theorem 6.4.1 and Theorem 7.1.3.]
- b. By Lemma 6.4.2, let $\{\mathbf{u}_1, ..., \mathbf{u}_m, ..., \mathbf{u}_n\}$ be a basis of V where $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ is a basis of U. By Theorem 7.1.3 there is a linear transformation $S: V \to V$ such that $S(\mathbf{u}_i) = \mathbf{u}_i$ for $1 \le i \le m$, and $S(\mathbf{u}_i) = \mathbf{0}$ if i > m. Because each \mathbf{u}_i is in im $S, U \subseteq \text{im } S$. But if $S(\mathbf{v})$ is in im *S*, write $\mathbf{v} = r_1 \mathbf{u}_1 + \cdots + r_m \mathbf{u}_m + \cdots + r_n \mathbf{u}_n$. Then $S(\mathbf{v}) = r_1 S(\mathbf{u}_1) + \dots + r_m S(\mathbf{u}_m) = r_1 \mathbf{u}_1 +$ $\cdots + r_m \mathbf{u}_m$ is in U. So im $S \subseteq U$.

Exercise 7.2.30 Let *V* and *W* be finite dimensional vector spaces.

- a. Show that $\dim W < \dim V$ if and only if there exists an onto linear transformation $T: V \rightarrow$ W. [*Hint*: Theorem 6.4.1 and Theorem 7.1.3.]
- b. Show that $\dim W \ge \dim V$ if and only if there exists a one-to-one linear transformation T: $V \rightarrow W$. [*Hint*: Theorem 6.4.1 and Theorem 7.1.3.]

Exercise 7.2.31 Let *A* and *B* be $n \times n$ matrices, and assume that $AXB = 0, X \in \mathbf{M}_{nn}$, implies X = 0. Show that A and B are both invertible. [Hint: Dimension Theorem.]

7.3 Isomorphisms and Composition

Often two vector spaces can consist of quite different types of vectors but, on closer examination, turn out to be the same underlying space displayed in different symbols. For example, consider the spaces

$$\mathbb{R}^2 = \{(a, b) \mid a, b \in \mathbb{R}\}$$
 and $\mathbf{P}_1 = \{a + bx \mid a, b \in \mathbb{R}\}$

Compare the addition and scalar multiplication in these spaces:

$$(a, b) + (a_1, b_1) = (a + a_1, b + b_1)$$

 $r(a, b) = (ra, rb)$
 $(a + bx) + (a_1 + b_1x) = (a + a_1) + (b + b_1)x$
 $r(a + bx) = (ra) + (rb)x$

Clearly these are the same vector space expressed in different notation: if we change each (a, b) in \mathbb{R}^2 to a + bx, then \mathbb{R}^2 becomes \mathbf{P}_1 , complete with addition and scalar multiplication. This can be expressed by noting that the map $(a, b) \mapsto a + bx$ is a linear transformation $\mathbb{R}^2 \to \mathbf{P}_1$ that is both one-to-one and onto. In this form, we can describe the general situation.

Definition 7.4 Isomorphic Vector Spaces

A linear transformation $T: V \to W$ is called an **isomorphism** if it is both onto and one-to-one. The vector spaces V and W are said to be **isomorphic** if there exists an isomorphism $T: V \to W$, and we write $V \cong W$ when this is the case.

Example 7.3.1

The identity transformation $1_V: V \to V$ is an isomorphism for any vector space V.

Example 7.3.2

If $T : \mathbf{M}_{mn} \to \mathbf{M}_{nm}$ is defined by $T(A) = A^T$ for all A in \mathbf{M}_{mn} , then T is an isomorphism (verify). Hence $\mathbf{M}_{mn} \cong \mathbf{M}_{nm}$.

Example 7.3.3

Isomorphic spaces can "look" quite different. For example, $\mathbf{M}_{22} \cong \mathbf{P}_3$ because the map $T: \mathbf{M}_{22} \to \mathbf{P}_3$ given by $T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a + bx + cx^2 + dx^3$ is an isomorphism (verify).

The word *isomorphism* comes from two Greek roots: *iso*, meaning "same," and *morphos*, meaning "form." An isomorphism $T: V \to W$ induces a pairing

$$\mathbf{v} \leftrightarrow T(\mathbf{v})$$

386 Linear Transformations

between vectors \mathbf{v} in V and vectors $T(\mathbf{v})$ in W that preserves vector addition and scalar multiplication. Hence, as far as their vector space properties are concerned, the spaces V and W are identical except for notation. Because addition and scalar multiplication in either space are completely determined by the same operations in the other space, all vector space properties of either space are completely determined by those of the other.

One of the most important examples of isomorphic spaces was considered in Chapter 4. Let A denote the set of all "arrows" with tail at the origin in space, and make A into a vector space using the parallelogram law and the scalar multiple law (see Section 4.1). Then define a transformation $T: \mathbb{R}^3 \to A$ by taking

$$T\begin{bmatrix}x\\y\\z\end{bmatrix}$$
 = the arrow **v** from the origin to the point $P(x, y, z)$.

In Section 4.1 matrix addition and scalar multiplication were shown to correspond to the parallelogram law and the scalar multiplication law for these arrows, so the map T is a linear transformation. Moreover T is an isomorphism: it is one-to-one by Theorem 4.1.2, and it is onto because, given an

arrow **v** in *A* with tip P(x, y, z), we have $T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{v}$. This justifies the identification $\mathbf{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ in Chapter 4 of the geometric arrows with the algebraic matrices. This identification is very useful.

in Chapter 4 of the geometric arrows with the algebraic matrices. This identification is very useful. The arrows give a "picture" of the matrices and so bring geometric intuition into \mathbb{R}^3 ; the matrices are useful for detailed calculations and so bring analytic precision into geometry. This is one of the best examples of the power of an isomorphism to shed light on both spaces being considered.

The following theorem gives a very useful characterization of isomorphisms: They are the linear transformations that preserve bases.

Theorem 7.3.1

If V and W are finite dimensional spaces, the following conditions are equivalent for a linear transformation $T: V \to W$.

- 1. T is an isomorphism.
- 2. If $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is any basis of V, then $\{T(\mathbf{e}_1), T(\mathbf{e}_2), \dots, T(\mathbf{e}_n)\}$ is a basis of W.
- 3. There exists a basis $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ of V such that $\{T(\mathbf{e}_1), T(\mathbf{e}_2), \ldots, T(\mathbf{e}_n)\}$ is a basis of W.

Proof. (1) \Rightarrow (2). Let $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ be a basis of *V*. If $t_1T(\mathbf{e}_1) + \cdots + t_nT(\mathbf{e}_n) = \mathbf{0}$ with t_i in \mathbb{R} , then $T(t_1\mathbf{e}_1 + \cdots + t_n\mathbf{e}_n) = \mathbf{0}$, so $t_1\mathbf{e}_1 + \cdots + t_n\mathbf{e}_n = \mathbf{0}$ (because ker $T = \{\mathbf{0}\}$). But then each $t_i = \mathbf{0}$ by the independence of the \mathbf{e}_i , so $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_n)\}$ is independent. To show that it spans *W*, choose \mathbf{w} in *W*. Because *T* is onto, $\mathbf{w} = T(\mathbf{v})$ for some \mathbf{v} in *V*, so write $\mathbf{v} = t_1\mathbf{e}_1 + \cdots + t_n\mathbf{e}_n$. Hence we obtain $\mathbf{w} = T(\mathbf{v}) = t_1T(\mathbf{e}_1) + \cdots + t_nT(\mathbf{e}_n)$, proving that $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_n)\}$ spans *W*.

- $(2) \Rightarrow (3)$. This is because V has a basis.
- (3) \Rightarrow (1). If $T(\mathbf{v}) = \mathbf{0}$, write $\mathbf{v} = v_1 \mathbf{e}_1 + \cdots + v_n \mathbf{e}_n$ where each v_i is in \mathbb{R} . Then

$$\mathbf{0} = T(\mathbf{v}) = v_1 T(\mathbf{e}_1) + \dots + v_n T(\mathbf{e}_n)$$

so $v_1 = \cdots = v_n = 0$ by (3). Hence $\mathbf{v} = \mathbf{0}$, so ker $T = \{\mathbf{0}\}$ and T is one-to-one. To show that T is onto, let \mathbf{w} be any vector in W. By (3) there exist w_1, \ldots, w_n in \mathbb{R} such that

$$\mathbf{w} = w_1 T(\mathbf{e}_1) + \dots + w_n T(\mathbf{e}_n) = T(w_1 \mathbf{e}_1 + \dots + w_n \mathbf{e}_n)$$

Thus T is onto.

Theorem 7.3.1 dovetails nicely with Theorem 7.1.3 as follows. Let V and W be vector spaces of dimension n, and suppose that $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ and $\{\mathbf{f}_1, \mathbf{f}_2, \ldots, \mathbf{f}_n\}$ are bases of V and W, respectively. Theorem 7.1.3 asserts that there exists a linear transformation $T: V \to W$ such that

$$T(\mathbf{e}_i) = \mathbf{f}_i$$
 for each $i = 1, 2, \ldots, n$

Then $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_n)\}$ is evidently a basis of W, so T is an isomorphism by Theorem 7.3.1. Furthermore, the action of T is prescribed by

$$T(r_1\mathbf{e}_1 + \dots + r_n\mathbf{e}_n) = r_1\mathbf{f}_1 + \dots + r_n\mathbf{f}_n$$

so isomorphisms between spaces of equal dimension can be easily defined as soon as bases are known. In particular, this shows that if two vector spaces V and W have the same dimension then they are isomorphic, that is $V \cong W$. This is half of the following theorem.

Theorem 7.3.2

If V and W are finite dimensional vector spaces, then $V \cong W$ if and only if dim $V = \dim W$.

Proof. It remains to show that if $V \cong W$ then dim $V = \dim W$. But if $V \cong W$, then there exists an isomorphism $T: V \to W$. Since V is finite dimensional, let $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ be a basis of V. Then $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_n)\}$ is a basis of W by Theorem 7.3.1, so dim $W = n = \dim V$.

Corollary 7.3.1

Let U, V, and W denote vector spaces. Then:

- 1. $V \cong V$ for every vector space V.
- 2. If $V \cong W$ then $W \cong V$.
- 3. If $U \cong V$ and $V \cong W$, then $U \cong W$.

The proof is left to the reader. By virtue of these properties, the relation \cong is called an *equivalence* relation on the class of finite dimensional vector spaces. Since $\dim(\mathbb{R}^n) = n$ it follows that

Corollary 7.3.2

If V is a vector space and dim V = n, then V is isomorphic to \mathbb{R}^n .

If V is a vector space of dimension n, note that there are important explicit isomorphisms $V \to \mathbb{R}^n$. Fix a basis $B = \{\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n\}$ of V and write $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ for the standard basis of \mathbb{R}^n . By Theorem 7.1.3 there is a unique linear transformation $C_B : V \to \mathbb{R}^n$ given by

$$C_B(v_1\mathbf{b}_1+v_2\mathbf{b}_2+\cdots+v_n\mathbf{b}_n)=v_1\mathbf{e}_1+v_2\mathbf{e}_2+\cdots+v_n\mathbf{e}_n=\begin{bmatrix}v_1\\v_2\\\vdots\\v_n\end{bmatrix}$$

where each v_i is in \mathbb{R} . Moreover, $C_B(\mathbf{b}_i) = \mathbf{e}_i$ for each i so C_B is an isomorphism by Theorem 7.3.1, called the **coordinate isomorphism** corresponding to the basis B. These isomorphisms will play a central role in Chapter ??.

The conclusion in the above corollary can be phrased as follows: As far as vector space properties are concerned, every *n*-dimensional vector space *V* is essentially the same as \mathbb{R}^n ; they are the "same" vector space except for a change of symbols. This appears to make the process of abstraction seem less important—just study \mathbb{R}^n and be done with it! But consider the different "feel" of the spaces \mathbf{P}_8 and \mathbf{M}_{33} even though they are both the "same" as \mathbb{R}^9 : For example, vectors in \mathbf{P}_8 can have roots, while vectors in \mathbf{M}_{33} can be multiplied. So the merit in the abstraction process lies in identifying *common* properties of the vector spaces in the various examples. This is important even for finite dimensional spaces. However, the payoff from abstraction is much greater in the infinite dimensional case, particularly for spaces of functions.

Example 7.3.4

Let V denote the space of all 2×2 symmetric matrices. Find an isomorphism $T : \mathbf{P}_2 \to V$ such that T(1) = I, where I is the 2×2 identity matrix.

Solution. {1, x, x²} is a basis of \mathbf{P}_2 , and we want a basis of V containing I. The set $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is independent in V, so it is a basis because dim V = 3 (by Example 6.3.11). Hence define $T : \mathbf{P}_2 \to V$ by taking $T(1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, T(x) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, T(x^2) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, and extending linearly as in Theorem 7.1.3. Then T is an isomorphism by Theorem 7.3.1, and its action is given by

$$T(a+bx+cx^{2}) = aT(1)+bT(x)+cT(x^{2}) = \begin{bmatrix} a & b \\ b & a+c \end{bmatrix}$$

The dimension theorem (Theorem 7.2.4) gives the following useful fact about isomorphisms.

Theorem 7.3.3

If V and W have the same dimension n, a linear transformation $T: V \to W$ is an isomorphism if it is either one-to-one or onto.

Proof. The dimension theorem asserts that $\dim(\ker T) + \dim(\operatorname{im} T) = n$, so $\dim(\ker T) = 0$ if and only if $\dim(\operatorname{im} T) = n$. Thus *T* is one-to-one if and only if *T* is onto, and the result follows.

Composition

Suppose that $T: V \to W$ and $S: W \to U$ are linear transformations. They link together as in the diagram so, as in Section 2.3, it is possible to define a new function $V \to U$ by first applying T and then S.

The action of ST can be described compactly as follows: ST means first T then S.

Not all pairs of linear transformations can be composed. For example, if $T: V \to W$ and $S: W \to U$ are linear transformations then $ST: V \to U$ is defined, but TS cannot be formed unless U = V because $S: W \to U$ and $T: V \to W$ do not "link" in that order.²

Moreover, even if ST and TS can both be formed, they may not be equal. In fact, if $S : \mathbb{R}^m \to \mathbb{R}^n$ and $T : \mathbb{R}^n \to \mathbb{R}^m$ are induced by matrices A and B respectively, then ST and TS can both be formed (they are induced by AB and BA respectively), but the matrix products AB and BA may not be equal (they may not even be the same *size*). Here is another example.

Example 7.3.5

Define: $S: \mathbf{M}_{22} \to \mathbf{M}_{22}$ and $T: \mathbf{M}_{22} \to \mathbf{M}_{22}$ by $S \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & d \\ a & b \end{bmatrix}$ and $T(A) = A^T$ for $A \in \mathbf{M}_{22}$. Describe the action of ST and TS, and show that $ST \neq TS$. Solution. $ST \begin{bmatrix} a & b \\ c & d \end{bmatrix} = S \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} b & d \\ a & c \end{bmatrix}$, whereas $TS \begin{bmatrix} a & b \\ c & d \end{bmatrix} = T \begin{bmatrix} c & d \\ a & b \end{bmatrix} = \begin{bmatrix} c & a \\ d & b \end{bmatrix}$.

It is clear that $TS\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ need not equal $ST\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, so $TS \neq ST$.

The next theorem collects some basic properties of the composition operation.

¹In Section 2.3 we denoted the composite as $S \circ T$. However, it is more convenient to use the simpler notation ST. ²Actually, all that is required is $U \subseteq V$.

Theorem 7.3.4: ³

Let $V \xrightarrow{T} W \xrightarrow{S} U \xrightarrow{R} Z$ be linear transformations.

1. The composite ST is again a linear transformation.

- 2. $T1_V = T$ and $1_W T = T$.
- 3. (RS)T = R(ST).

Proof. The proofs of (1) and (2) are left as Exercise 7.3.25. To prove (3), observe that, for all \mathbf{v} in V:

 $\{(RS)T\}(\mathbf{v}) = (RS)[T(\mathbf{v})] = R\{S[T(\mathbf{v})]\} = R\{(ST)(\mathbf{v})\} = \{R(ST)\}(\mathbf{v})\}$

Up to this point, composition seems to have no connection with isomorphisms. In fact, the two notions are closely related.

Theorem 7.3.5

Let V and W be finite dimensional vector spaces. The following conditions are equivalent for a linear transformation $T: V \to W$.

1. T is an isomorphism.

2. There exists a linear transformation $S: W \to V$ such that $ST = 1_V$ and $TS = 1_W$.

Moreover, in this case S is also an isomorphism and is uniquely determined by T:

If \mathbf{w} in W is written as $\mathbf{w} = T(\mathbf{v})$, then $S(\mathbf{w}) = \mathbf{v}$.

<u>Proof.</u> (1) \Rightarrow (2). If $B = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is a basis of V, then $D = \{T(\mathbf{e}_1), \dots, T(\mathbf{e}_n)\}$ is a basis of W by Theorem 7.3.1. Hence (using Theorem 7.1.3), define a linear transformation $S: W \to V$ by

$$S[T(\mathbf{e}_i)] = \mathbf{e}_i \quad \text{for each } i \tag{7.2}$$

Since $\mathbf{e}_i = \mathbf{1}_V(\mathbf{e}_i)$, this gives $ST = \mathbf{1}_V$ by Theorem 7.1.2. But applying T gives $T[S[T(\mathbf{e}_i)]] = T(\mathbf{e}_i)$ for each i, so $TS = \mathbf{1}_W$ (again by Theorem 7.1.2, using the basis D of W).

 $(2) \Rightarrow (1)$. If $T(\mathbf{v}) = T(\mathbf{v}_1)$, then $S[T(\mathbf{v})] = S[T(\mathbf{v}_1)]$. Because $ST = \mathbf{1}_V$ by (2), this reads $\mathbf{v} = \mathbf{v}_1$; that is, T is one-to-one. Given \mathbf{w} in W, the fact that $TS = \mathbf{1}_W$ means that $\mathbf{w} = T[S(\mathbf{w})]$, so T is onto.

³Theorem 7.3.4 can be expressed by saying that vector spaces and linear transformations are an example of a category. In general a category consists of certain objects and, for any two objects X and Y, a set mor(X, Y). The elements α of mor(X, Y) are called morphisms from X to Y and are written $\alpha : X \to Y$. It is assumed that identity morphisms and composition are defined in such a way that Theorem 7.3.4 holds. Hence, in the category of vector spaces the objects are the vector spaces themselves and the morphisms are the linear transformations. Another example is the category of metric spaces, in which the objects are sets equipped with a distance function (called a metric), and the morphisms are continuous functions (with respect to the metric). The category of sets and functions is a very basic example.

Finally, *S* is uniquely determined by the condition $ST = 1_V$ because this condition implies (7.2). *S* is an isomorphism because it carries the basis *D* to *B*. As to the last assertion, given **w** in *W*, write $\mathbf{w} = r_1T(\mathbf{e}_1) + \cdots + r_nT(\mathbf{e}_n)$. Then $\mathbf{w} = T(\mathbf{v})$, where $\mathbf{v} = r_1\mathbf{e}_1 + \cdots + r_n\mathbf{e}_n$. Then $S(\mathbf{w}) = \mathbf{v}$ by (7.2).

Given an isomorphism $T: V \to W$, the unique isomorphism $S: W \to V$ satisfying condition (2) of Theorem 7.3.5 is called the **inverse** of T and is denoted by T^{-1} . Hence $T: V \to W$ and $T^{-1}: W \to V$ are related by the **fundamental identities**:

 $T^{-1}[T(\mathbf{v})] = \mathbf{v}$ for all \mathbf{v} in V and $T[T^{-1}(\mathbf{w})] = \mathbf{w}$ for all \mathbf{w} in W

In other words, each of T and T^{-1} reverses the action of the other. In particular, equation (7.2) in the proof of Theorem 7.3.5 shows how to define T^{-1} using the image of a basis under the isomorphism T. Here is an example.

Example 7.3.6

Define $T: \mathbf{P}_1 \to \mathbf{P}_1$ by T(a+bx) = (a-b) + ax. Show that T has an inverse, and find the action of T^{-1} .

Solution. The transformation T is linear (verify). Because T(1) = 1 + x and T(x) = -1, T carries the basis $B = \{1, x\}$ to the basis $D = \{1 + x, -1\}$. Hence T is an isomorphism, and T^{-1} carries D back to B, that is,

 $T^{-1}(1+x) = 1$ and $T^{-1}(-1) = x$

Because a + bx = b(1 + x) + (b - a)(-1), we obtain

$$T^{-1}(a+bx) = bT^{-1}(1+x) + (b-a)T^{-1}(-1) = b + (b-a)x$$

Sometimes the action of the inverse of a transformation is apparent.

Example 7.3.7

If $B = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ is a basis of a vector space V, the coordinate transformation $C_B: V \to \mathbb{R}^n$ is an isomorphism defined by

$$C_B(v_1\mathbf{b}_1 + v_2\mathbf{b}_2 + \dots + v_n\mathbf{b}_n) = (v_1, v_2, \dots, v_n)^T$$

The way to reverse the action of C_B is clear: $C_B^{-1} : \mathbb{R}^n \to V$ is given by

$$C_B^{-1}(v_1, v_2, \dots, v_n) = v_1 \mathbf{b}_1 + v_2 \mathbf{b}_2 + \dots + v_n \mathbf{b}_n \quad \text{for all } v_i \text{ in } V$$

Condition (2) in Theorem 7.3.5 characterizes the inverse of a linear transformation $T: V \to W$ as the (unique) transformation $S: W \to V$ that satisfies $ST = 1_V$ and $TS = 1_W$. This often determines the inverse.

Example 7.3.8

Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by T(x, y, z) = (z, x, y). Show that $T^3 = 1_{\mathbb{R}^3}$, and hence find T^{-1} .

Solution. $T^2(x, y, z) = T[T(x, y, z)] = T(z, x, y) = (y, z, x)$. Hence

$$T^{3}(x, y, z) = T[T^{2}(x, y, z)] = T(y, z, x) = (x, y, z)$$

Since this holds for all (x, y, z), it shows that $T^3 = 1_{\mathbb{R}^3}$, so $T(T^2) = 1_{\mathbb{R}^3} = (T^2)T$. Thus $T^{-1} = T^2$ by (2) of Theorem 7.3.5.

Example 7.3.9

Define $T: \mathbf{P}_n \to \mathbb{R}^{n+1}$ by $T(p) = (p(0), p(1), \dots, p(n))$ for all p in \mathbf{P}_n . Show that T^{-1} exists.

<u>Solution</u>. The verification that T is linear is left to the reader. If T(p) = 0, then p(k) = 0 for k = 0, 1, ..., n, so p has n+1 distinct roots. Because p has degree at most n, this implies that p = 0 is the zero polynomial (Theorem ??) and hence that T is one-to-one. But dim $\mathbf{P}_n = n+1 = \dim \mathbb{R}^{n+1}$, so this means that T is also onto and hence is an isomorphism. Thus T^{-1} exists by Theorem 7.3.5. Note that we have not given a description of the action of T^{-1} , we have merely shown that such a description exists. To give it explicitly requires some ingenuity; one method involves the Lagrange interpolation expansion (Theorem ??).

Exercises for 7.3

Exercise 7.3.1 Verify that each of the following is an isomorphism (Theorem 7.3.3 is useful).

- a. $T: \mathbb{R}^3 \to \mathbb{R}^3$; T(x, y, z) = (x+y, y+z, z+x)
- b. $T : \mathbb{R}^3 \to \mathbb{R}^3$; T(x, y, z) = (x, x+y, x+y+z)
- c. $T: \mathbb{C} \to \mathbb{C}; T(z) = \overline{z}$
- d. $T: \mathbf{M}_{mn} \to \mathbf{M}_{mn}; T(X) = UXV, U$ and V invertible

e.
$$T : \mathbf{P}_1 \to \mathbb{R}^2$$
; $T[p(x)] = [p(0), p(1)]$

f. $T: V \to V; T(\mathbf{v}) = k\mathbf{v}, k \neq 0$ a fixed number, V any vector space

g.
$$T: \mathbf{M}_{22} \to \mathbb{R}^4; T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = (a+b, d, c, a-b)$$

- h. $T: \mathbf{M}_{mn} \to \mathbf{M}_{nm}; T(A) = A^T$
- b. T is onto because T(1, -1, 0) = (1, 0, 0), T(0, 1, -1) = (0, 1, 0), and T(0, 0, 1) =(0, 0, 1). Use Theorem 7.3.3.
- d. T is one-to-one because 0 = T(X) = UXV implies that X = 0 (U and V are invertible). Use Theorem 7.3.3.
- f. *T* is one-to-one because $\mathbf{0} = T(\mathbf{v}) = k\mathbf{v}$ implies that $\mathbf{v} = \mathbf{0}$ (because $k \neq 0$). *T* is onto because $T\left(\frac{1}{k}\mathbf{v}\right) = \mathbf{v}$ for all \mathbf{v} . [Here Theorem 7.3.3 does not apply if dim *V* is not finite.]
- h. T is one-to-one because T(A) = 0 implies $A^T = 0$, whence A = 0. Use Theorem 7.3.3.

Exercise 7.3.2 Show that

$$\{a+bx+cx^2, a_1+b_1x+c_1x^2, a_2+b_2x+c_2x^2\}$$

is a basis of \mathbf{P}_2 if and only if $\{(a, b, c), (a_1, b_1, c_1), (a_2, b_2, c_2)\}$ is a basis of \mathbb{R}^3 .

Exercise 7.3.3 If V is any vector space, let V^n denote the space of all *n*-tuples $(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n)$, where each \mathbf{v}_i lies in V. (This is a vector space with component-wise operations; see Exercise 6.1.17.) If $C_j(A)$ denotes the *j*th column of the $m \times n$ matrix A, show that $T: \mathbf{M}_{mn} \to (\mathbb{R}^m)^n$ is an isomorphism if $T(A) = \begin{bmatrix} C_1(A) & C_2(A) & \cdots & C_n(A) \end{bmatrix}$. (Here \mathbb{R}^m consists of columns.)

Exercise 7.3.4 In each case, compute the action of *ST* and *TS*, and show that $ST \neq TS$.

a. $S : \mathbb{R}^2 \to \mathbb{R}^2$ with $S(x, y) = (y, x); T : \mathbb{R}^2 \to \mathbb{R}^2$ with T(x, y) = (x, 0)

b.
$$S : \mathbb{R}^3 \to \mathbb{R}^3$$
 with $S(x, y, z) = (x, 0, z);$
 $T : \mathbb{R}^3 \to \mathbb{R}^3$ with $T(x, y, z) = (x+y, 0, y+z)$

c.
$$S: \mathbf{P}_2 \to \mathbf{P}_2$$
 with $S(p) = p(0) + p(1)x + p(2)x^2$;
 $T: \mathbf{P}_2 \to \mathbf{P}_2$ with $T(a+bx+cx^2) = b+cx+ax^2$

d.
$$S: \mathbf{M}_{22} \to \mathbf{M}_{22}$$
 with $S\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix};$
 $T: \mathbf{M}_{22} \to \mathbf{M}_{22}$ with $T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & a \\ d & b \end{bmatrix}$

b.
$$ST(x, y, z) = (x + y, 0, y + z), TS(x, y, z) =$$

(x, 0, z)
d. $ST\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix}, TS\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & a \\ d & 0 \end{bmatrix}$

Exercise 7.3.5 In each case, show that the linear transformation T satisfies $T^2 = T$.

a. $T: \mathbb{R}^4 \to \mathbb{R}^4; T(x, y, z, w) = (x, 0, z, 0)$

b.
$$T : \mathbb{R}^2 \to \mathbb{R}^2$$
; $T(x, y) = (x+y, 0)$

c. $T: \mathbf{P}_2 \rightarrow \mathbf{P}_2;$ $T(a+bx+cx^2) = (a+b-c)+cx+cx^2$

d.
$$T: \mathbf{M}_{22} \to \mathbf{M}_{22};$$

 $T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{2} \begin{bmatrix} a+c & b+d \\ a+c & b+d \end{bmatrix}$

b.
$$T^2(x, y) = T(x+y, 0) = (x+y, 0) = T(x, y).$$

Hence $T^2 = T.$
d. $T^2 \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{2}T \begin{bmatrix} a+c & b+d \\ a+c & b+d \end{bmatrix} = \frac{1}{2} \begin{bmatrix} a+c & b+d \\ a+c & b+d \end{bmatrix}$

Exercise 7.3.6 Determine whether each of the following transformations T has an inverse and, if so, determine the action of T^{-1} .

a. $T : \mathbb{R}^3 \to \mathbb{R}^3;$ T(x, y, z) = (x+y, y+z, z+x)b. $T : \mathbb{R}^4 \to \mathbb{R}^4;$

$$T(x, y, z, t) = (x+y, y+z, z+t, t+x)$$

c.
$$T: \mathbf{M}_{22} \to \mathbf{M}_{22};$$

 $T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a-c & b-d \\ 2a-c & 2b-d \end{bmatrix}$

Ъ (Г

d.
$$T: \mathbf{M}_{22} \to \mathbf{M}_{22};$$

 $T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+2c & b+2d \\ 3c-a & 3d-b \end{bmatrix}$
e. $T: \mathbf{P}_2 \to \mathbb{R}^3; T(a+bx+cx^2) = (a-c, 2b, a+c)$
f. $T: \mathbf{P}_2 \to \mathbb{R}^3; T(p) = [p(0), p(1), p(-1)]$

b. No inverse;
$$(1, -1, 1, -1)$$
 is in ker T .
d. $T^{-1}\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{5}\begin{bmatrix} 3a-2c & 3b-2d \\ a+c & b+d \end{bmatrix}$
f. $T^{-1}(a, b, c) = \frac{1}{2} [2a+(b-c)x-(2a-b-c)x^2]$

Exercise 7.3.7 In each case, show that T is self-inverse, that is: $T^{-1} = T$.

- a. T: ℝ⁴ → ℝ⁴; T(x, y, z, w) = (x, -y, -z, w)
 b. T: ℝ² → ℝ²; T(x, y) = (ky x, y), k any fixed number
- c. $T : \mathbf{P}_n \to \mathbf{P}_n; T(p(x)) = p(3-x)$

- d. $T: \mathbf{M}_{22} \to \mathbf{M}_{22}; T(X) = AX$ where $A = \frac{1}{4} \begin{bmatrix} 5 & -3 \\ 3 & -5 \end{bmatrix}$
- b. $T^{2}(x, y) = T(ky x, y) = (ky (ky x), y) = (x, y)$
- d. $T^2(X) = A^2 X = IX = X$

Exercise 7.3.8 In each case, show that $T^6 = 1_{R^4}$ and so determine T^{-1} .

- a. $T : \mathbb{R}^4 \to \mathbb{R}^4$; T(x, y, z, w) = (-x, z, w, y)b. $T : \mathbb{R}^4 \to \mathbb{R}^4$: T(x, y, z, w) = (-y, x - y, z, -w)
- b. $T^{3}(x, y, z, w) = (x, y, z, -w)$ so $T^{6}(x, y, z, w) = T^{3}[T^{3}(x, y, z, w)] = (x, y, z, w)$. Hence $T^{-1} = T^{5}$. So $T^{-1}(x, y, z, w) = (y x, -x, z, -w)$.

Exercise 7.3.9 In each case, show that T is an isomorphism by defining T^{-1} explicitly.

- a. $T : \mathbf{P}_n \to \mathbf{P}_n$ is given by T[p(x)] = p(x+1).
- b. $T: \mathbf{M}_{nn} \to \mathbf{M}_{nn}$ is given by T(A) = UA where U is invertible in \mathbf{M}_{nn} .
- b. $T^{-1}(A) = U^{-1}A$.

Exercise 7.3.10 Given linear transformations $V \xrightarrow{T} W \xrightarrow{S} U$:

- a. If S and T are both one-to-one, show that ST is one-to-one.
- b. If S and T are both onto, show that ST is onto.
- b. Given \mathbf{u} in U, write $\mathbf{u} = S(\mathbf{w})$, \mathbf{w} in W (because S is onto). Then write $\mathbf{w} = T(\mathbf{v})$, \mathbf{v} in V (T is onto). Hence $\mathbf{u} = ST(\mathbf{v})$, so ST is onto.

Exercise 7.3.11 Let $T: V \to W$ be a linear transformation.

- a. If T is one-to-one and $TR = TR_1$ for transformations R and $R_1 : U \to V$, show that $R = R_1$.
- b. If T is onto and $ST = S_1T$ for transformations S and $S_1 : W \to U$, show that $S = S_1$.

Exercise 7.3.12 Consider the linear transformations $V \xrightarrow{T} W \xrightarrow{R} U$.

- a. Show that ker $T \subseteq \ker RT$.
- b. Show that im $RT \subseteq im R$.
- b. For all \mathbf{v} in V, $(RT)(\mathbf{v}) = R[T(\mathbf{v})]$ is in $\operatorname{im}(R)$.

Exercise 7.3.13 Let $V \xrightarrow{T} U \xrightarrow{S} W$ be linear transformations.

- a. If ST is one-to-one, show that T is one-to-one and that dim $V \leq \dim U$.
- b. If ST is onto, show that S is onto and that $\dim W \leq \dim U$.
- b. Given \mathbf{w} in W, write $\mathbf{w} = ST(\mathbf{v})$, \mathbf{v} in V (ST is onto). Then $\mathbf{w} = S[T(\mathbf{v})]$, $T(\mathbf{v})$ in U, so S is onto. But then im S = W, so dim $U = \dim(\ker S) + \dim(\operatorname{im} S) \ge \dim(\operatorname{im} S) = \dim W$.

Exercise 7.3.14 Let $T: V \to V$ be a linear transformation. Show that $T^2 = 1_V$ if and only if T is invertible and $T = T^{-1}$.

Exercise 7.3.15 Let N be a nilpotent $n \times n$ matrix (that is, $N^k = 0$ for some k). Show that $T : \mathbf{M}_{nm} \to \mathbf{M}_{nm}$ is an isomorphism if T(X) = X - NX. [*Hint*: If X is in ker T, show that $X = NX = N^2X = \cdots$. Then use Theorem 7.3.3.]

Exercise 7.3.16 Let $T: V \to W$ be a linear transformation, and let $\{\mathbf{e}_1, \ldots, \mathbf{e}_r, \mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ be any basis of V such that $\{\mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ is a basis of ker T.

Show that im $T \cong \text{span} \{ \mathbf{e}_1, \dots, \mathbf{e}_r \}$. [*Hint*: See Theorem 7.2.5.]

 $\{T(\mathbf{e}_1), T(\mathbf{e}_2), \ldots, T(\mathbf{e}_r)\}\$ is a basis of im T by Theorem 7.2.5. So T: span $\{\mathbf{e}_1, \ldots, \mathbf{e}_r\} \rightarrow \operatorname{im} T$ is an isomorphism by Theorem 7.3.1.

Exercise 7.3.17 Is every isomorphism $T : \mathbf{M}_{22} \to \mathbf{M}_{22}$ given by an invertible matrix U such that T(X) = UX for all X in \mathbf{M}_{22} ? Prove your answer.

Exercise 7.3.18 Let \mathbf{D}_n denote the space of all functions f from $\{1, 2, ..., n\}$ to \mathbb{R} (see Exercise 6.3.35). If $T : \mathbf{D}_n \to \mathbb{R}^n$ is defined by

$$T(f) = (f(1), f(2), \dots, f(n)),$$

show that T is an isomorphism.

Exercise 7.3.19

- a. Let V be the vector space of Exercise 6.1.3. Find an isomorphism $T: V \to \mathbb{R}^1$.
- b. Let V be the vector space of Exercise 6.1.4. Find an isomorphism $T: V \to \mathbb{R}^2$.
- b. T(x, y) = (x, y+1)

Exercise 7.3.20 Let $V \xrightarrow{T} W \xrightarrow{S} V$ be linear transformations such that $ST = 1_V$. If dim $V = \dim W = n$, show that $S = T^{-1}$ and $T = S^{-1}$. [*Hint*: Exercise 7.3.13 and Theorem 7.3.3, Theorem 7.3.4, and Theorem 7.3.5.]

Exercise 7.3.21 Let $V \xrightarrow{T} W \xrightarrow{S} V$ be functions such that $TS = 1_W$ and $ST = 1_V$. If *T* is linear, show that *S* is also linear.

Exercise 7.3.22 Let *A* and *B* be matrices of size $p \times m$ and $n \times q$. Assume that mn = pq. Define $R: \mathbf{M}_{mn} \to \mathbf{M}_{pq}$ by R(X) = AXB.

- a. Show that $\mathbf{M}_{mn} \cong \mathbf{M}_{pq}$ by comparing dimensions.
- b. Show that R is a linear transformation.
- c. Show that if R is an isomorphism, then m = pand n = q. [*Hint*: Show that $T : \mathbf{M}_{mn} \to \mathbf{M}_{pn}$ given by T(X) = AX and $S : \mathbf{M}_{mn} \to \mathbf{M}_{mq}$ given by S(X) = XB are both one-to-one, and use the dimension theorem.]

Exercise 7.3.23 Let $T: V \to V$ be a linear transformation such that $T^2 = 0$ is the zero transformation.

- a. If $V \neq \{0\}$, show that T cannot be invertible.
- b. If $R: V \to V$ is defined by $R(\mathbf{v}) = \mathbf{v} + T(\mathbf{v})$ for all \mathbf{v} in V, show that R is linear and invertible.

Exercise 7.3.24 Let *V* consist of all sequences $[x_0, x_1, x_2, ...)$ of numbers, and define vector operations

$$[x_o, x_1, \ldots) + [y_0, y_1, \ldots) = [x_0 + y_0, x_1 + y_1, \ldots)$$
$$r[x_0, x_1, \ldots) = [rx_0, rx_1, \ldots)$$

- a. Show that V is a vector space of infinite dimension.
- b. Define $T: V \to V$ and $S: V \to V$ by $T[x_0, x_1, \ldots) = [x_1, x_2, \ldots)$ and $S[x_0, x_1, \ldots) = [0, x_0, x_1, \ldots)$. Show that $TS = 1_V$, so TS is one-to-one and onto, but that T is not one-to-one and S is not onto.
- b. $TS[x_0, x_1, \ldots) = T[0, x_0, x_1, \ldots) = [x_0, x_1, \ldots),$ so $TS = 1_V$. Hence TS is both onto and oneto-one, so T is onto and S is one-to-one by Exercise 7.3.13. But $[1, 0, 0, \ldots)$ is in ker Twhile $[1, 0, 0, \ldots)$ is not in im S.

Exercise 7.3.25 Prove (1) and (2) of Theorem 7.3.4.

Exercise 7.3.26 Define $T : \mathbf{P}_n \to \mathbf{P}_n$ by T(p) = p(x) + xp'(x) for all p in \mathbf{P}_n .

- a. Show that T is linear.
- b. Show that ker $T = \{0\}$ and conclude that T is an isomorphism. [*Hint*: Write $p(x) = a_0 + a_1x + \dots + a_nx^n$ and compare coefficients if p(x) = -xp'(x).]
- c. Conclude that each q(x) in \mathbf{P}_n has the form q(x) = p(x) + xp'(x) for some unique polynomial p(x).
- d. Does this remain valid if T is defined by T[p(x)] = p(x) xp'(x)? Explain.

b. If T(p) = 0, then p(x) = -xp'(x). We write $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$, and this becomes $a_0 + a_1x + a_2x^2 + \dots + a_nx^n = -a_1x - a_1x^n$ $2a_2x^2 - \cdots - na_nx^n$. Equating coefficients yields $a_0 = 0, \ 2a_1 = 0, \ 3a_2 = 0, \ \dots, \ (n+1)a_n = 0,$ whence p(x) = 0. This means that ker T = 0, so T is one-to-one. But then T is an isomorphism by Theorem 7.3.3.

Exercise 7.3.27 Let $T: V \to W$ be a linear transformation, where V and W are finite dimensional.

- a. Show that T is one-to-one if and only if there exists a linear transformation $S: W \to V$ with $ST = 1_V$. [*Hint*: If $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ is a basis of V and T is one-to-one, show that W has a basis $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_n), \mathbf{f}_{n+1}, \ldots, \mathbf{f}_{n+k}\}$ and use Theorem 7.1.2 and Theorem 7.1.3.]
- b. Show that T is onto if and only if there exists a linear transformation $S: W \to V$ with $TS = 1_W$. [*Hint*: Let $\{\mathbf{e}_1, \ldots, \mathbf{e}_r, \ldots, \mathbf{e}_n\}$ be a basis of *V* such that $\{\mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ is a basis of ker *T*. Use Theorem 7.2.5, Theorem 7.1.2 and Theorem 7.1.3.]
- b. If $ST = 1_V$ for some S, then T is onto by Exercise 7.3.13. If T is onto, let $\{e_1, ..., e_r, ..., e_n\}$ be a basis of V such that $\{\mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ is a basis of ker T. Since T is onto, $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_r)\}$ is a basis of $\operatorname{im} T = W$ by Theorem 7.2.5. Thus $S: W \to V$ is an isomorphism where by $S\{T(\mathbf{e}_i)\} = \mathbf{e}_i$ for i =1, 2, ..., r. Hence $TS[T(\mathbf{e}_i)] = T(\mathbf{e}_i)$ for each *i*, that is $TS[T(\mathbf{e}_i)] = \mathbf{1}_W[T(\mathbf{e}_i)]$. This means that $TS = 1_W$ because they agree on the basis $\{T(\mathbf{e}_1), ..., T(\mathbf{e}_r)\}$ of *W*.

Exercise 7.3.28 Let S and T be linear transformations $V \to W$, where dim V = n and dim W = m.

a. Show that ker $S = \ker T$ if and only if T = RSfor some isomorphism $R: W \to W$. [*Hint*: Let $\{\mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ is a basis of ker $S = \ker T$. Use Theorem 7.2.5 to extend $\{S(\mathbf{e}_1), \ldots, S(\mathbf{e}_r)\}$ and $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_r)\}$ to bases of W.]

- b. Show that $\operatorname{im} S = \operatorname{im} T$ if and only if T = SR for some isomorphism $R: V \to V$. [*Hint*: Show that dim (ker S) = dim (ker T) and choose bases $\{\mathbf{e}_1, \ldots, \mathbf{e}_r, \ldots, \mathbf{e}_n\}$ and ${\bf f}_1, ..., {\bf f}_r, ..., {\bf f}_n$ of V where ${\bf e}_{r+1}, ..., {\bf e}_n$ and $\{\mathbf{f}_{r+1}, \ldots, \mathbf{f}_n\}$ are bases of ker S and ker T, respectively. If $1 \le i \le r$, show that $S(\mathbf{e}_i) = T(\mathbf{g}_i)$ for some \mathbf{g}_i in V, and prove that $\{\mathbf{g}_1, ..., \mathbf{g}_r, \mathbf{f}_{r+1}, ..., \mathbf{f}_n\}$ is a basis of V.]
- b. If T = SR, then every vector $T(\mathbf{v})$ in im T has the form $T(\mathbf{v}) = S[R(\mathbf{v})]$, whence im $T \subseteq \text{im } S$. Since *R* is invertible, $S = TR^{-1}$ implies im $S \subseteq$ im T. Conversely, assume that im $S = \operatorname{im} T$. Then $\dim(\ker S) = \dim(\ker T)$ by the dimension theorem. Let $\{e_1, ..., e_r, e_{r+1}, ..., e_n\}$ and $\{\mathbf{f}_1, \ldots, \mathbf{f}_r, \mathbf{f}_{r+1}, \ldots, \mathbf{f}_n\}$ be bases of V such that $\{\mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ and $\{\mathbf{f}_{r+1}, \ldots, \mathbf{f}_n\}$ are bases of ker S and ker T, respectively. By Theorem 7.2.5, $\{S(\mathbf{e}_1), ..., S(\mathbf{e}_r)\}$ and $\{T(\mathbf{f}_1), \ldots, T(\mathbf{f}_r)\}$ are both bases of $\operatorname{im} S =$ im T. So let $\mathbf{g}_1, \ldots, \mathbf{g}_r$ in V be such that $S(\mathbf{e}_i) = T(\mathbf{g}_i)$ for each $i = 1, 2, \ldots, r$. Show that

 $B = \{\mathbf{g}_1, \ldots, \mathbf{g}_r, \mathbf{f}_{r+1}, \ldots, \mathbf{f}_n\}$ is a basis of V.

Then define $R: V \to V$ by $R(\mathbf{g}_i) = \mathbf{e}_i$ for i =1, 2, ..., r, and $R(\mathbf{f}_i) = \mathbf{e}_i$ for i = r+1, ..., n. Then R is an isomorphism by Theorem 7.3.1. Finally SR = T since they have the same effect on the basis B.

Exercise 7.3.29 If $T: V \to V$ is a linear transformation where dim V = n, show that TST = Tfor some isomorphism $S: V \to V$. *Hint*: Let $\{e_1, ..., e_r, e_{r+1}, ..., e_n\}$ be as in Theorem 7.2.5. Extend $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_r)\}$ to a basis of V, and use Theorem 7.3.1, Theorem 7.1.2 and Theorem 7.1.3.]

Let $B = \{e_1, ..., e_r, e_{r+1}, ..., e_n\}$ be a basis of V with $\{\mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ a basis of ker T. If $\{e_1, ..., e_r, ..., e_n\}$ be a basis of V such that $\{T(e_1), ..., T(e_r), w_{r+1}, ..., w_n\}$ is a basis of V,

define S by $S[T(\mathbf{e}_i)] = \mathbf{e}_i$ for $1 \le i \le r$, and $S(\mathbf{w}_j) = \mathbf{e}_j$ for $r+1 \le j \le n$. Then S is an isomorphism by Theorem 7.3.1, and $TST(\mathbf{e}_i) = T(\mathbf{e}_i)$ clearly holds for $1 \le i \le r$. But if $i \ge r+1$, then $T(\mathbf{e}_i) = \mathbf{0} = TST(\mathbf{e}_i)$, so T = TST by Theorem 7.1.2.

Exercise 7.3.30 Let A and B denote $m \times n$ matrices. In each case show that (1) and (2) are equivalent.

- a. (1) A and B have the same null space. (2) B = PA for some invertible $m \times m$ matrix P.
- b. (1) A and B have the same range. (2) B = AQ for some invertible $n \times n$ matrix Q.
- [*Hint*: Use Exercise 7.3.28.]